Published online by Cambridge University Press: 22 January 2014
We give a framework for delimited control with multiple prompts, in the style of Parigot's λμ-calculus, through a series of incremental extensions by starting with the pure λ-calculus. Each language inherits the semantics and reduction theory of its parent, giving a systematic way to describe each level of control. For each language of interest, we fully characterize its semantics in terms of a reduction semantics, operational semantics, continuation-passing style transform, and abstract machine. Furthermore, the control operations are expressed in terms of fine-grained primitives that can be used to build well-known, higher-level control operators. In order to illustrate the expressive power provided by various languages, we show how other computational effects can be encoded in terms of these control operators.
Discussions
No Discussions have been published for this article.