Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T03:52:45.915Z Has data issue: false hasContentIssue false

Resolution and mora counting in Old English

Published online by Cambridge University Press:  05 December 2008

Seiichi Suzuki
Affiliation:
The Institute for Advanced Studies in the HumanitiesThe University of EdinburghEdinburgh EH8 9NW, UK

Abstract

The operation and suspension of resolution in Old English meter, generalized as Kaluza's Law, is shown to be based on mora counting; -VC(C), -VV(C), and -VCV count as bimoric, while -VCVC(C) and -VCVV(C) are trimoric. The maximum moric value of a syllable is two. The proposed mora-based analysis leads to an improved account of a number of phonological processes in pre- and Early Old English.

Type
Research Article
Copyright
Copyright © Society for Germanic Linguistics 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

WORKS CITED

Bliss, A. J. 1967. The metre of Beowulf. Rev. ed. Oxford: Blackwell.Google Scholar
Cable, Thomas. 1974. The meter and melody of Beowulf. Urbana: University of Illinois Press.Google Scholar
Cable, Thomas. 1994. “Syllable weight in Old English meter: Grids, morae, and Kaluza's law.” Diachronica 11: 111.CrossRefGoogle Scholar
Campbell, Alistair. 1959. Old English grammar. Oxford: Clarendon.Google Scholar
Fulk, R. D. 1989. “Kaluza's law and the dating of Old English verse.” Abstract of a talk given at Modern Language Association Convention, Washington, DC., December 1989.Google Scholar
Fulk, R. D. 1992. A history of Old English meter. Philadelphia: University of Pennsylvania press.Google Scholar
Hayes, Bruce. 1986. “Inalterability in CV phonology.” Language 62: 321–51.CrossRefGoogle Scholar
Hayes, Bruce. 1989. “Compensatory lengthening in moraic phonology.” Linguistic inquiry 20: 253306.Google Scholar
Hogg, Richard M. 1992. A grammar of Old English. Vol. 1. Phonology. Oxford: Blackwell.Google Scholar
Hutcheson, Bellenden Rand Jr. 1991. “Old English poetry: a metrical study.” Diss. Columbia University.Google Scholar
Hyman, Larry M. 1985. A theory of phonological weight. Dordrecht: Foris.CrossRefGoogle Scholar
Kaluza, Max. 1896. “Zur Betonungs- und Verslehre des Altenglischen.” In Festschrift zum siebzigsten Geburtstage Oskar Schade. Königsberg: Hartung. Pp. 101–33.Google Scholar
Klaeber, Frederick. 1950. Beowulf and the fight at Finnsburg. 3d ed.Lexington, Mass.: Heath.Google Scholar
Krahe, Hans and Wolfgang, Meid. 1967. Germanische Sprachwissenschaft. I. Einleitung und Lautlehre. Berlin: de Gruyter.Google Scholar
Kuryłowicz, Jerzy. 1949. “Latin and Germanic metre.” English and Germanic studies 2:3438; in Esquisses linguistiques I. 2d ed, 281–85. Munich: Fink, 1973. [1st ed. Wrocław: Polska Akademia Nauk, 1960]Google Scholar
Kuryłowicz, Jerzy. 1970. Die sprachlichen Grundlagen der altgermanischen Metrik. Innsbruck: Institut für Sprachwissenschaft, Universität Innsbruck.Google Scholar
Liberman, Anatoly. 1990. “The phonetic organization of early Germanic.” American journal of Germanic linguistics and literatures 2: 122.CrossRefGoogle Scholar
Murray, Robert W. 1988. Phonological strength and early Germanic syllable structure. Munich: Fink.Google Scholar
Murray, Robert W. 1991. “Early Germanic syllable structure revisited.” Diachronica 8: 201–38.CrossRefGoogle Scholar
Schein, Barry and Donca, Steriade. 1986. “On geminates.” Linguistic inquiry 17: 691744.Google Scholar
Sievers, Eduard. 1893. Altgermanische Metrik. Halle: Niemeyer.Google Scholar
Suzuki, Seiichi. 1994. “Breaking, ambisyllabicity, and the sonority hierarchy in Old English.” Diachronica 11: 6593.CrossRefGoogle Scholar
Suzuki, Seiichi. forthcoming a. “In defense of resolution in the meter of Beowulf.” To appear in English studies.Google Scholar
Suzuki, Seiichi. forthcoming b. “Preference conditions for resolution in the meter of Beowulf: Kaluza's law reconsidered.” (To appear in Modern philology.)Google Scholar
Suzuki, Seiichi. in preparation. The metrical organization of Beowulf.Google Scholar
Vennemann, Theo. 1988. Preference laws for syllable structure and the explanation of sound change: with special reference to German, Germanic, Italian, and Latin. Berlin: de Gruyter.Google Scholar
Voyles, Joseph B. 1992. Early Germanic grammar. Pre-, proto-, and post-Germanic languages. San Diego: Academic Press.CrossRefGoogle Scholar