Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T01:54:09.443Z Has data issue: false hasContentIssue false

Detection and identification of Diphyllobothrium nihonkaiense plerocercoids from wild Pacific salmon (Oncorhynchus spp.) in Japan

Published online by Cambridge University Press:  25 March 2010

J. Suzuki*
Affiliation:
Division of Clinical Microbiology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
R. Murata
Affiliation:
Division of Clinical Microbiology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
K. Sadamasu
Affiliation:
Division of Clinical Microbiology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
J. Araki
Affiliation:
Meguro Parasitological Museum, Tokyo, Japan
*
*Fax: +81-3-3368-4060 E-mail: Jun_Suzuki@member.metro.tokyo.jp

Abstract

We investigated the risk of diphyllobothriasis from ingestion of wild Pacific salmon in Japan by surveying Diphyllobothrium plerocercoids in 182 salmon samples obtained from Japan. The plerocercoids were not detected in chum salmon (Oncorhynchus keta) (0/26), called Akizake in Japan, caught between September and November. However, the detection rate of plerocercoids in chum salmon, called Tokishirazu in Japan, caught between early April and June, was 51.1% (24/47) with an average of two plerocercoid larvae per fish. The detection rates of cherry salmon (Oncorhynchus masou) and pink salmon (Oncorhynchus gorbuscha) were 12.2% (10/82) and 18.5% (5/27), respectively, and the average number of plerocercoids per fish was 0.45 (37 larvae/82 fishes) and 0.22 larvae (6 larvae/27 fishes), respectively. Plerocercoids isolated from O. keta and O. masou were identified as Diphyllobothrium nihonkaiense on the basis of molecular analysis of the cox1 and nad3 genes. Moreover, four tapeworms (three from O. keta and one from O. masou) were obtained by infecting golden hamsters with plerocercoids. The morphological features of these tapeworms were similar to those of D. nihonkaiense isolated from humans. Therefore, we think that O. keta and not O. masou is the most important source of plerocercoid infections in Japan.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, K. (1971) Studies of the helminth fauna of Norway XVII: comparison of Diphyllobothrium dendriticum Nitzsch, 1824, D. norvegicum, Vik, 1957 and D. latum (Linne, 1758) (Cestoda: Pseudophylodea). Norwegian Journal of Zoology 19, 2136.Google Scholar
Andersen, K. (1972) Studies of the helminth fauna of Norway XXIV: the morphology of Dihpyllobothrium ditremum (Creplin, 1825) from the golden hamster (Mesocrisetus auratus Waterhouse, 1839) and a comparison with D. dendriticum (Nitzsch, 1824) and D. latum (L., 1758) from the same final host. Norwegian Journal of Zoology 20, 255264.Google Scholar
Andersen, K. (1977) A marine Diphyllobothrium plerocercoid (Cestoda, Pseudophyllidea) from blue whiting (Micromestius poutasson). Zeitschrift für Parasitenkunde 52, 289296.Google Scholar
Andersen, K., Ching, H.L. & Vik, R. (1987) A review of freshwater species of Diphyllobothrium with redescriptions and the distribution of D. dendriticum (Nitzsch, 1984) and D. ditremum (Creplin, 1825) from North America. Canadian Journal of Zoology 65, 22162228.CrossRefGoogle Scholar
Arizono, N., Shedko, M., Yamada, M., Uchikawa, R., Tegoshi, T., Takeda, K. & Hashimoto, K. (2009a) Mitochondrial DNA divergence in populations of the tapeworm Diphyllobothrium nihonkaiense and its phylogenetic relationship with Diphyllobothrium klebanovskii. Parasitology International 58, 2228.CrossRefGoogle ScholarPubMed
Arizono, N., Yamada, M., Nakamura-Uchiyama, F. & Ohnishi, K. (2009b) Diphyllobothriasis associated with eating raw Pacific salmon. Emerging Infectious Diseases 15, 866870.CrossRefGoogle ScholarPubMed
Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.CrossRefGoogle ScholarPubMed
Hirosawa, M., Totoki, Y., Hoshida, M. & Ishikawa, M. (1995) Comprehensive study on iterative algorithms of multiple sequence alignment. Computer Applications in the Biosciences 11, 1318.Google Scholar
Ijima, J. (1889) The source of Bothriocephalus latus in Japan. The Journal of the College of Science, Imperial University of Tokyo, Japan 2, 4956.Google Scholar
Miyadera, H., Kokaze, A., Kuramochi, T., Kita, K., Machinami, R., Noya, O., Alarcón de Noya, B., Okamoto, M. & Kojima, S. (2001) Phylogenetic identification of Sparganum proliferum as a pseudophyllidean cestode by the sequence analyses on mitochondrial COI and nuclear sdhB genes. Parasitology International 50, 93104.CrossRefGoogle ScholarPubMed
Muratov, I.V. & Posokhov, P.S. (1988) Causative agent of human diphyllobothriasis – Diphyllobothrium klebanovskii sp. Parazitologiia 22, 165170.Google ScholarPubMed
Nakao, M., Abmed, D., Yamasaki, H. & Ito, A. (2007) Mitochondrial genomes of the human broad tapeworms Diphyllobothrium latum and Diphyllobothrium nihonkaiense (Cestoda: Diphyllobothriidae). Parasitology Research 101, 233236.CrossRefGoogle ScholarPubMed
Nishiyama, T. (1994) Environmental changes and tapeworm diseases in Japan – special reference to diphyllobothriasis nihonkaiense (diphyllobothriasis latum). Japanese Journal of Parasitology 43, 471476(in Japanese).Google Scholar
Okazaki, T. (1986) Distribution, migration and possible origins of genetically different populations of chum salmon Oncorhynchus keta along the eastern coasts of northern Japan. Bulletin of the Japanese Society of Scientific Fisheries 52, 983994.CrossRefGoogle Scholar
Rausch, R.L. & Hilliard, D.K. (1970) Studies on the helminth fauna of Alaska. XLIX. The occurrence of Diphyllobothrium latum (Linnaeus, 1758) (Cestoda: Diphyllobothriidae) in Alaska, with notes on other species. Canadian Journal of Zoology 48, 12011219.CrossRefGoogle ScholarPubMed
Shimizu, I. (2001) Structural factors on changes in the supply and demand of salmon in Japan. Bulletin of the National Salmon Resources Center 4, 1929(in Japanese).Google Scholar
Suzuki, J., Murata, R., Miyake, H., Yanagawa, Y. & Araki, J. (2004) Three cases of Diphyllobothrium nihonkaiense in Tokyo Metropolitan Institute of Public Health. Clinical Parasitology 15, 2729(in Japanese).Google Scholar
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.Google Scholar
Wicht, B., de Marval, F. & Peduzzi, R. (2007) Diphyllobothrium nihonkaiense (Yamane et al., 1986) in Switzerland: first molecular evidence and case reports. Parasitology International 56, 195199.Google Scholar
Yamane, Y., Kamo, H., Bylund, G. & Wilkgren, J.P. (1986) Diphyllobothrium nihonkaiense sp. nov. (Cestoda: Diphyllobothriidae) – revised identification of Japanese broad tapeworm. Shimane Journal of Medical Science 10, 2948.Google Scholar
Yera, H., Estran, C., Delaunay, P., Gari-Toussaint, M., Dupouy-Camet, J. & Marty, P. (2006) Putative Diphyllobothrium nihonkaiense acquired from a Pacific salmon (Oncorhynchus keta) eaten in France; genomic identification and case report. Parasitology International 55, 4549.CrossRefGoogle ScholarPubMed
Yoshida, M., Hasegawa, H., Takano, H. & Miyata, A. (1999) A case of Diphyllobothrium nihonkaiense infection successfully treated by oral administration of Gastrografin. Parasitology International 48, 151155.CrossRefGoogle ScholarPubMed