Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T00:05:15.650Z Has data issue: false hasContentIssue false

Effects of 5-hydroxytryptamine (serotonin) on the incorporation of 32P-inorganic phosphate into phospholipids in Hymenolepis diminuta (Cestoda)

Published online by Cambridge University Press:  05 June 2009

Y. K. Ip
Affiliation:
Parasitology Laboratory, Department of Zoology, National University of Singapore, Kent Ridge, Singapore 0511
M. M. Khan
Affiliation:
Parasitology Laboratory, Department of Zoology, National University of Singapore, Kent Ridge, Singapore 0511

Abstract

5-Hydroxytryptamine (5-HT) (1, 2 and 5 mM) significantly stimulated the incorporation of radioactive inorganic phosphate (32Pi) into phosphatidylinositol, phosphatidyiethanolamine, phosphatidic acid and also total phospholipid fraction of Hymenolepis diminuta after one hour of incubation. Such effect was both time and concentration dependent. In the presence of 5-HT early labelling of phosphatidylinositol was observed. Also, the percentage stimulation by 5-HT was the highest in this fraction under all experimental conditions. The inorganic, organic, total and phosphatidylcholine-bound phosphate of H. diminuta incubated with 5-HT were not significantly different from those of the control under all incubation conditions. Results reported herein suggest that messenger molecules that are derived from phosphoinositides may be involved in the stimulatory mechanism of 5-HT in H. diminuta.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ames, B. N. & Dubin, D. T. (1960) The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. Journal of Biological Chemistry, 235, 769774.CrossRefGoogle ScholarPubMed
Cho, C. H. & Mettrick, D. F. (1982) Circadian variation in the distribution of Hymenolepis diminuta (Cestoda) and 5-hydroxytryptamine levels in the gastrointestinal tract of the laboratory rat. Parasitology, 84, 431441.CrossRefGoogle ScholarPubMed
Fiske, C. H. & Subbarow, Y. (1925) The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66, 375400.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane-Stanley, G. H. (1957) A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 222, 497509.CrossRefGoogle Scholar
Garattini, S. & Valzelli, L. (1965) Serotonin. Elsevier Publishers, New York. pp. 268.Google Scholar
Ginger, C. D. & Fairbairn, D. (1966) Lipid metabolism in helminth parasites. I. The lipids of Hymenlopis diminuta (Cestoda). Journal of Parasitology, 52, 10861096.CrossRefGoogle ScholarPubMed
Hoevet, S. P., Viswanathan, C. V. & Lundberg, W. O. (1968) Fractionation of a natural mixture of alkenyl acyl- and diacyl choline phosphatides by argentation adsorption thin layer chromatography. Journal of Chromatography, 34, 195201.CrossRefGoogle ScholarPubMed
Hokin, L. E. (1985) Receptor and phosphoinositide-generated second messengers. Annual Review of Biochemistry, 54, 205235.CrossRefGoogle ScholarPubMed
Hokin, M. R. (1969) Effect of norepinephrine on 32P incorporation into individual phosphatides in slices from different areas of the guinea pig brain. Journal of Neurochemistry, 16, 127134.CrossRefGoogle ScholarPubMed
Hokin, M. R. (1970) Effects of dopamine, gamma-aminobutyric acid and 5-hydroxytryptamine on incorporation of 32P into phosphatides slices from the guinea pig brain. Journal of Neurochemistry, 17, 357364.CrossRefGoogle ScholarPubMed
Hokin, M. R. & Hokin, L. E. (1953) Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices. Journal of Biological Chemistry, 203, 967977.CrossRefGoogle Scholar
Khan, M. M., Chua, Y. Y. & Ip, Y. K. (1987) Effects of glucose transport on the incorporation of 32P-inorganic phosphate into phospholipids in Hymenolepis diminuta (Cestoda). Comparative Biochemistry and Physiology, 88B, 5157.Google ScholarPubMed
Majerus, P. W., Connally, T. M., Deckmyn, H., Ross, T. S., Bross, T. E., Ishi, H., Bansal, V. S. & Wilson, D. B. (1986) The metabolism of phosphoinositide-derived messenger molecules. Science, 234, 15191526.CrossRefGoogle Scholar
Mettrick, D. F. & Cho, C. H. (1982) Changes in tissue and intestinal serotonin (5-HT) levels in the laboratory rat following feeding and the effect of 5-HT inhibitors on the migrating response of Hymenolepis diminuta (Cestoda). Canadian Journal of Zoology, 60, 790797.CrossRefGoogle Scholar
Mettrick, D. F. & Podesta, R. B. (1974) Ecological and physiological aspects of helminth-host interactions in the mammalian gastrointestinal canal. Advances in Parasitology, 12, 183278.CrossRefGoogle ScholarPubMed
Mettrick, D. F., Rahman, M. S. & Podesta, R. B. (1981) Effect of 5-hydroxytryptamine (5-HT; serotonin) on in vitro glucose uptake and glycogen reserves in Hymenolepis diminuta. Molecular and Biochemical Parasitology, 4, 217223.CrossRefGoogle ScholarPubMed
Michell, R. H. (1975) Inositol phospholipids and all surface receptor function. Biochmica et Biophysica Acta, 415, 81147.CrossRefGoogle ScholarPubMed
Ribeiro, P. & Webb, R. A. (1986) Demonstration of specific high-affinity binding sites for (3H)-5-hydroxytryptamine in the cestode Hymenolepis diminuta. Comparative Biochemistry and Physiology, 84C, 353358.Google Scholar
Rosenthal, A. F. & Han, S. C. (1969) Phosphorus determination in phosphoglycerides from thin layer chromatography. Journal of Lipid Research, 10, 243245.CrossRefGoogle Scholar
Rouser, G., Kritchevsky, G. & Yamamoto, A. (1967) Lipid chromatographic analysis (editor Marinetti, G. Y.), Vol. 1. Marcel Dekker, New York. pp. 99162.Google Scholar
Webb, R. A. & Mettrick, D. F. (1972) Quantitative liquid scintillation radioassay of phospholipids from thin layer chromatograms. Journal of Chromatography, 67, 7580.CrossRefGoogle ScholarPubMed
Webb, R. A. & Mettrick, D. F. (1975) The role of glucose in the lipid metabolism of the rat tapeworm Hymenolepis diminuta. International Journal of Parasitology, 5, 107112.CrossRefGoogle ScholarPubMed