Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T18:02:21.164Z Has data issue: false hasContentIssue false

First record of Neoxysomatium brevicaudatum through the non-invasive sampling of Anguis fragilis: complementary morphological and molecular detection

Published online by Cambridge University Press:  06 May 2011

R. Jones
Affiliation:
School of Biosciences, Cardiff University, CardiffCF10 3AX, UK
D.S. Brown
Affiliation:
School of Biosciences, Cardiff University, CardiffCF10 3AX, UK
E. Harris
Affiliation:
Natural History Museum, Cromwell Road, LondonSW7 5BD, UK
J. Jones
Affiliation:
Capita Symonds, Tŷ Gwent, Lake View, Llantarnam Park, CwmbranNP44 3HR, UK
W.O.C. Symondson
Affiliation:
School of Biosciences, Cardiff University, CardiffCF10 3AX, UK
M.W. Bruford
Affiliation:
School of Biosciences, Cardiff University, CardiffCF10 3AX, UK
J. Cable*
Affiliation:
School of Biosciences, Cardiff University, CardiffCF10 3AX, UK
*
*Fax: +44(0)029 20874116 E-mail: cablej@cardiff.ac.uk

Abstract

Relatively few studies have examined the parasite fauna of British reptiles, partly due to the cryptic nature and low population density of these hosts. Here we examined 12 populations of the slow worm Anguis fragilis which, unlike other UK lizards, occurs at locally high population densities. Morphological examination of non-invasively collected faecal samples revealed the presence of Neoxysomatium brevicaudatum and a second unidentified nematode species. Although previously unrecorded from slow worms in the UK, N. brevicaudatum was present in 38% of animals (mean intensity 70.9, range 1–686). Morphological identification was confirmed by sequencing the 18S ribosomal gene. The use of the species-specific, cytochrome oxidase I mitochondrial gene primers proved an efficient alternative to conventional, microscope screening for parasites, although the original identification of N. brevicaudatum was dependent upon morphological characters. Sequencing also identified the second, smaller nematode as belonging to the Rhabdiasidae family: this species was even more common at a prevalence of 83% (mean intensity 102.8, range 1–2000). While increasing our knowledge of the UK macroparasite fauna, this work demonstrates the benefits of a combined morphological–molecular approach.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, M.R. (1980) Revision of Entomelas Travassos, 1930 (Nematoda: Rhabdiasidae) with a review of genera in the family. Systematic Parasitology 1, 8390.CrossRefGoogle Scholar
Borkovcová, M. & Kopřiva, J. (2005) Parasitic helminths of reptiles (Reptilia) in South Moravia (Czech Republic). Parasitology Research 95, 7778.CrossRefGoogle ScholarPubMed
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Jones, R., Cable, J. & Bruford, M.W. (2008) An evaluation of non-invasive genetic analysis in Northern European reptiles. Herpetological Journal 18, 3239.Google Scholar
Karadenız, E., Gürkan, E. & Koyun, M. (2005) Metazoan parasites of the marsh frog (Rana ridibunda Pallas 1771; Anura) collected from the different regions in Turkey. Turkiye Parazitoloji Dergisi 29, 135139.Google Scholar
Kirin, D. (2002) New records of the helminth fauna from grass snake, Natrix natrix L., 1758 and dice snake, Natrix tessellata Laurenti, 1768 (Colubridae: Reptilia) in South Bulgaria. Acta Zoologica Bulgarica 54, 4953.Google Scholar
Kirin, D. & Buchvaov, G. (2002) Biodiversity of the helminth communities of acaudated amphibians (Amphibia – Ecaudata) from Bistritsa riverside (Gotse Delchev region). Experimental Pathology and Parasitology 5, 1316.Google Scholar
Kumar, S., Tamura, K. & Masatoshi, N. (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5, 150163.CrossRefGoogle ScholarPubMed
Kuzmin, Y., Tkach, V.V. & Snyder, S.D. (2003) The nematode genus Rhabdias (Nematoda: Rhabdiasidae) from amphibians and reptiles of the Nearctic. Comparative Parasitology 70, 101114.CrossRefGoogle Scholar
Mihalca, A.D., Gherman, C., Ghira, I. & Cozma, V. (2007) Helminth parasites of reptiles (Reptilia) in Romania. Parasitology Research 101, 491492.CrossRefGoogle ScholarPubMed
Nielsen, M.K., Peterson, D.S., Monrad, J., Thamsborg, S.M., Olsen, S.N. & Kaplan, R.M. (2008) Detection and semi-quantification of Strongylus vulgaris DNA in equine faeces by real-time quantitative PCR. International Journal for Parasitology 38, 443453.CrossRefGoogle ScholarPubMed
Ponton, F., Lebarbenchon, C., Lefèvre, T., Biron, D.G., Duneau, D., Hughes, D.P. & Thomas, F. (2010) Parasite survives predation on its host. Nature 440, 756.CrossRefGoogle Scholar
Ryzhikov, K.M., Sharpilo, V.P. & Shevechenko, N.N. (1980) Helminths of amphibians of the fauna of the USSR. Moscow, Russia, Izdatel'stov Nauka.Google Scholar
Saeed, I., Al-Barwari, S.E. & Al-Harmni, K.I. (2007) Metazoan parasitological research of some Iraqi amphibians. Türkiye Parazitoloji Dergisi 31, 337345.Google ScholarPubMed
Saglam, N. & Arikan, H. (2006) Endohelminth fauna of the marsh frog Rana ridibunda from Lake Hazar, Turkey. Diseases of Aquatic Organisms 72, 253260.CrossRefGoogle ScholarPubMed
Schulte, F. & Poinarj, G.O. (1991) Description of Rhabditis (Rhabditoides) regina n. sp. (Nematoda: Rhabditidae) from the body cavity of beetle larvae in Guatemala. Revue Nématology 14, 151156.Google Scholar
Sharpilo, V.P. (1974) A new member of the Genus Neoxysomatium Nematoda Cosmocercidae a parasite of slow worms of the Caucasus. Parazitologiya 8, 112115.Google Scholar
Shimalov, V.V. & Shimalov, V.T. (2000) Helminth fauna of snakes (Reptilia, Serpentes) in Belorussian Polesye. Parasitology Research 86, 340341.CrossRefGoogle ScholarPubMed
Shimalov, V.V., Shimalov, V.T. & Shimalov, A.V. (2000) Helminth fauna of lizards (Reptilia, Sauria) in the southern part of Belarus. Parasitology Research 86, 343.CrossRefGoogle ScholarPubMed
Tkach, V.V., Kuzmin, Y. & Pulis, E.E. (2006) A new species of Rhabdias from lungs of the wood frog, Rana sylvatica, in North America: the last sibling of Rhabdias ranae? Journal of Parasitology 92, 631636.CrossRefGoogle ScholarPubMed
Vashetko, E.V. & Siddikov, B.H. (1999) The effect of the ecology of toads on the distribution of helminths. Turkish Journal of Zoology 23, 107110.Google Scholar
Yamaguti, S. (1961) System Helminthum. Volume III: The nematodes of vertebrates. pp. 99100. New York, Interscience Publishers.Google Scholar
Wilson, M.J., Glen, D.M. & George, S.K. (1993) The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs. Biocontrol Science & Technology 3, 503511.CrossRefGoogle Scholar