Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T13:28:32.286Z Has data issue: false hasContentIssue false

Nonspecific immunomodulation influences resistance of mice to experimental infection with Mesocestoides corti and Ascaris suum

Published online by Cambridge University Press:  05 June 2009

J. Heřmánek
Affiliation:
Institute of Parasitology, Czechoslovak Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czechoslovakia

Abstract

The influence of nonspecific immunomodulation on the course of experimental infection was examined in larval cestodosis (Mesocestoides corti) and ascaridosis (Ascaris suum) in mice. Immunosuppressive treatment (with azathioprine or hydrocortisone) resulted in a decrease of resistance in both models. The subsequent administration of T-activin to immunosuppressed mice led to the restoration of resistance to a level equal to that of untreated control mice. The administration of different immunomodulators partially protected mice against M. corti (T-activin. thymomodulin) or A. suum (T-activin. thymomodulin. thymosin fr.5. bursa-activin) infection. The protective effect of different treatments did not correlate with the level of specific antibody in the sera of infected mice. These results, which confirmed the decisive role of T-cell immunity in the resistance to the helminth infections, raise the possibility of the use of immunomodulators (thymic preparations) in the immunoprophylaxis of helminthoses.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arion, V. Y. (1987) Immunobiology of thymic peptides: T-activin. Zhurnal Mikrobiologii Epidemiologii lmmunobiologii, 4, 98104. (In Russian).Google Scholar
Bindseil, E. (1970) Immunity to Ascaris suum. 4. The effect of different stimulations Upon challenge with Ascaris suum in mice. Acta Pathologica et Microbiologica Scandinavia, 78B, 191196.Google Scholar
Cazzolla, P., Mazzanti, P. & Kouttab, N. M. (1987) Update and future perspectives of a thymic biological response modifier (Thymomodulin). lmmunopharmacology and Immunotoxicology. 9, 195216.CrossRefGoogle Scholar
Chappell, L. H., Wastling, J. M. & Hurd, H. (1989) Action of Cyclosporin-A on the tapeworms Hymenolepis microstoma, H. diminuta and Mesocestoides corti in vivo. Parasitology, 98, 291299.CrossRefGoogle ScholarPubMed
Cook, R. W., Trapp, A., & Williams, J. F. (1981) Pathology of Taenia taeniaeformis infection in the rat: hepatic lymph node and thymic changes. Journal of Comparative Pathology, 91, 219226.CrossRefGoogle ScholarPubMed
Cox, F. E. G. (1978) Specific and nonspecific immunisation against parasitic infections. Nature, 273, 623626.CrossRefGoogle ScholarPubMed
Crandall, C. A. & Crandall, R. B. (1976) Ascaris suum: immunosuppression in mice during acute infection. Experimental Parasitology, 40, 363372.CrossRefGoogle ScholarPubMed
Crandall, R. B., Crandall, C. A. & Jones, J. F. (1978) Analysis of immunosuppression during acute infection of mice with Ascaris suum. Clinical and Experimental Immunology, 33, 3037.Google ScholarPubMed
Heřmánek, J. & Koudela, B. (1980) Influence of nonspecific immunomodulation with thymic preparations on the result of infection in some experimental parasitoses. In: Immunotherapeutic Prospects of Infectious Diseases (Masihi, N. K., Lange, W., eds.). Springer Verlag. pp. 7175.Google Scholar
Heřmánek, J. & Prokopič, J. (1989) Influence of thymic preparations on the result of experimental infection with Taenia crassiceps (Zeder. 1800). in ICR mice. Folia Parasitologica. 36, 331–34Google ScholarPubMed
Hooper, J. A., Mcdaniel, M. C., Thurman, G. B., Cohen, G. H., Schulof, R. S. & Goldstein, A. L. (1975) Purification and properties of bovine thymosin. Annals of the New York Academy of Sciences, 249, 125144.CrossRefGoogle ScholarPubMed
Jacobson, R. H. (1982) Immunodeficieney models in characterization of immune responses to parasites—an overview. Veterinary Parasitology, 10, 141154.CrossRefGoogle Scholar
Johnstone, C., Leventhal, R. & Soulsby, E. J. L. (1981) Ascaris suum: T-cell responses of C57Bl/6J mice in vitro and in, vivo. Experimental Parasitology, 51, 243256.CrossRefGoogle ScholarPubMed
Klesius, P. H. (1982) Immunopotentiation against internal parasites. Veterinary Parasitology, 10, 239248.CrossRefGoogle ScholarPubMed
Kouttab, N. M. (1987) Thymic hormones: immunologic mechanisms and therapeutic actions. Marcel Dekker: New York.Google Scholar
Lammas, D. A., Mitchell, L. A. & Wakelin, D. (1987) Adoptive transfer of enhanced cosinophilia and resistance to infection in mice by an in vitro generated T-cell line specific for Mesocestoides corti larval antigen. Parasite lmmunology, 9, 591601CrossRefGoogle Scholar
Letonja, T., Hammerberg, C., Davis, S. & Hammerberg, B. (1988) Taenia taeniaeformis: cellular reconstruction of athymic mice and role of L3T4+ helper T-lymphocytes in the early infection. Journal of Parasitology, 74, 985992.CrossRefGoogle ScholarPubMed
Mitchell, G. F., Hogarth-Scott, R. S., Edwards, R. D., Lewers, H. M., Cousins, G. & Moore, T., (1976) Studies on immune responses to parasite antigens in mice: I. Ascaris suum larvae numbers and antiphosphorylcholine responses in mice of various strains and in hypothymic mice. International Archives on Allergy and Applied Immunology, 52, 6478.CrossRefGoogle Scholar
Nielsen, K., Fogh, L. & Anderson, S. (1974) Eosinophil response to migrating Ascaris suum larvae in normal and congenitally thymusless mice. Acta Pathologica et Microbiologica Scandinavia, 82, 919–92Google Scholar
Novak, M. (1974a) Acceleration of the growth of tetrathyridial populations of Mesocestoides corti (Cestoda: Cyclophyllidea) by splenectomy. International Journal for Parasitology, 4, 165168.CrossRefGoogle ScholarPubMed
Novak, M. (1974b) Effect of sex hormones on the growth and multiplication of tetrathyridia of Mesocestoides corti (Cestoda: Cyclophyllidea) by mice. International Journal for Parasitology, 4, 371374.CrossRefGoogle ScholarPubMed
Novak, M. (1975a) Cortisone and the growth of populations of Mesocestoides tetrathyridia in mice. International Journal for Parasitology, 5, 517–52CrossRefGoogle ScholarPubMed
Novak, M. (1975b) Gonadectomy, sex hormones and the growth of tetrathyridial populations of Mesocestoides corti (Cestoda: Cyclophyllidea) in mice. International Journal for Parasitology, 5, 269274.CrossRefGoogle ScholarPubMed
Novak, M. & Lubinsky, G. (1973) Acceleration of the growth of populations and of the multiplication of tetrathyridia of Mesocestoides corti Hoeppli. 1925 (Cestoda: Cyclophyllidea) by some cytostatic agents. Canadian Journal of Zoology, 51, 8390.CrossRefGoogle Scholar
Pollaco, S., Nicholas, W. L., Mitchell, G. F. & Stewart, A. C. (1978) T-cell-dependent collagenous encapsulating response in the mouse liver to Mesocestoides corti (Cestoda). International Journal for Parasitology, 8, 457462.CrossRefGoogle Scholar
Price, T. & Turner, K. J. (1986) Immunosuppressive effects of extracts of helminthic parasites in C57BI mice. International Journal for Parasitology, 16, 607615.CrossRefGoogle Scholar
Prokopič, J. & Klabanová, V. (1980) The distribution of the migrating larvae of Toxocara canis (Werner 1782) in different organs of experimentally infected white mice. Československá Epidetmologie Mikrobiologie Immunologic, 29, 171176 (in Czech).Google Scholar
Renoux, G. & Renoux, M. (1980) The effects of sodium diethyldithioearbamate. azathioprine, cyclophosphamide. or hydrocortisone acetate administered alone or in association for 4 weeks on the immune responses of Balb/c mice. Clinical Immunology and Immunopathology, 15, 2332.CrossRefGoogle ScholarPubMed
Terry, R. & Hudson, K. (1982) Immunodepression in parasitic infections. In: Immune Reactions to Parasites (editor Frank, W.). Gustav Fischer Verlag: New York. pp. 125139.Google Scholar
Thompson, R. C. A. & Penhale, W. J. (1978) The enhancement of tetrathyridial proliferation of Mesocestoides corti in mice by BCG. Zeitschrift für Parasitenkunde, 56, 195203.CrossRefGoogle Scholar
Thurman, G. B., Rossio, J. L. & Goldstein, A. L. (1977) Thymosin-induced recovery of murine T-cell functions following treatment with hydrocortisone acetate. Transplantation Proceedings, 9, 12011203.Google ScholarPubMed
Váňovà, L. & Lukeš, S. (1987) Correlation of the results of IFAT-DASS and ELISA tests in experimental cysticercosis of mice. Folia Parasitologica, 34, 2529.Google ScholarPubMed
White, T. R., Thompson, R. C. A. & Penhale, W. J. (1982) A comparative study of the susceptibility of inbred Strains of mice to infection with Mesocestoides corti. International Journal for Parasitology, 12, 2933.CrossRefGoogle ScholarPubMed
White, T. R., Thompson, R. C. A. & Penhale, W. J. (1983) The effects of selective immunosuppression on resistance to Mesocestoides corti in strains of mice showing high and low initial susceptibility. Zeitschrift für Parasitenkunde, 69, 91104.CrossRefGoogle ScholarPubMed
White, T. R., Thompson, R.C.A. & Penhale, W. J. (1988a) Studies on BCG immunotherapy in mice infected with Mesocestoides corti. International Journal for Parasitology, 18, 389393.CrossRefGoogle ScholarPubMed
White, T. R., Thompson, R. C. A., Penhale, W. J. & Chihara, G. (1988b) The effect of lentinan on the resistance of mice to Mesocestoides corti. Parasitology Research, 74, 563568.CrossRefGoogle ScholarPubMed