Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T18:16:45.178Z Has data issue: false hasContentIssue false

Anthelmintic activity of phenolic acids from the axlewood tree Anogeissus leiocarpus on the filarial nematode Onchocerca ochengi and drug-resistant strains of the free-living nematode Caenorhabditis elegans

Published online by Cambridge University Press:  17 June 2013

D. Ndjonka*
Affiliation:
Faculty of Science, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
E.D. Abladam
Affiliation:
Faculty of Science, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
B. Djafsia
Affiliation:
Faculty of Science, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
I. Ajonina-Ekoti
Affiliation:
Institute for Zoophysiology, Schlossplatz 8, 48143Muenster, Germany
M.D. Achukwi
Affiliation:
Veterinary Research Laboratory, Institute of Agricultural Research for Development, Wakwa Regional Centre, P.O. Box 65, Ngaoundere, Cameroon
E. Liebau
Affiliation:
Institute for Zoophysiology, Schlossplatz 8, 48143Muenster, Germany

Abstract

The effect of three phenols (ellagic, gentisic and gallic acids) from the axlewood tree Anogeissus leiocarpus on Onchocerca ochengi and drug-resistant strains of Caenorhabditis elegans, a model organism for research on nematode parasites, is investigated. Worms were incubated in different concentrations of phenols and their survival was monitored after 48 h. Among the three acids, ellagic acid strongly affected the survival of O. ochengi microfilariae, O. ochengi adults, a wild-type C. elegans and anthelmintic-resistant strains of C. elegans, namely albendazole (CB3474), levamisole (CB211, ZZ16) and ivermectin (VC722, DA1316), with LC50 values ranging from 0.03 mm to 0.96 mm. These results indicate that the binding of ellagic acid in the worm differs from that of resistant strains of C. elegans. The efficacy of both gallic and gentisic acids was not significantly changed in resistant strains of C. elegans treated with levamisole (ZZ16, LC50= 9.98 mm, with gallic acid), albendazole (CB3474, LC50= 7.81 mm, with gentisic acid) and ivermectin (DA1316, LC50= 10.62 mm, with gentisic acid). The efficacy of these three pure compounds is in accordance with the use of A. leiocarpus from its locality of origin. The in vivo toxicity data reveal that the thresholds are up to 200 times higher than the determined LC50 values. Thus, ellagic acid could be a potential option for the treatment of nematode infections, even in cases of drug resistance towards established anthelmintic drugs.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceves, J., Erlij, D. & Martínez-Marañón, R. (1970) The mechanism of the paralysing action of tetramisole on Ascaris somatic muscle. British Journal of Pharmacology 38, 602607.CrossRefGoogle ScholarPubMed
Achukwi, M.D., Harnett, W. & Renz, A. (2000) Onchocerca ochengi transmission dynamics and the correlation of O. ochengi microfilaria density in cattle with the transmission potential. Veterinary Research 31, 611621.Google Scholar
Ademola, I.O. & Eloff, J.N. (2011) In vitro anthelmintic effect of Anogeissus leiocarpus (DC.) Guill. & Perr. leaf extracts and fractions on developmental stages of Haemonchus contortus. African Journal of Traditional, Complementary and Alternative Medicines 8, 134139.Google Scholar
Ademola, I.O., Fagbemi, B.O. & Idowu, S.O. (2004) Evaluation of anthelmintic activity of Khaya senegalensis extract against gastrointestinal nematodes of sheep: in vitro and in vivo studies. Veterinary Parasitology 122, 151164.Google Scholar
Akanbi, O.M., Omonkhua, A.A., Cyril-Olutayo, C.M. & Fasimoye, R.Y. (2012) The antiplasmodial activity of Anogeissus leiocarpus and its effect on oxidative stress and lipid profile in mice infected with Plasmodium bergheii. Parasitology Research 110, 219226.CrossRefGoogle ScholarPubMed
Asres, K., Bucar, F., Knauder, E., Yardley, V., Kendrick, H. & Croft, S.L. (2001) In vitro antiprotozoal activity of extract and compounds from the stem bark of Combretum molle. Phytotherapy Research 15, 613617.CrossRefGoogle ScholarPubMed
Aubry, M.L., Cowell, P., Davey, M.J. & Shevde, S. (1970) Aspects of the pharmacology of a new anthelmintic: pyrantel. British Journal of Pharmacology 38, 332344.CrossRefGoogle ScholarPubMed
Borsboom, G.J., Boatin, B.A., Nagelkerke, N.J., Agoua, H., Akpoboua, K.L., Alley, E.W., Bissan, Y., Renz, A., Yameogo, L., Remme, J.H. & Habbema, J.D. (2003) Impact of ivermectin on onchocerciasis transmission: assessing the empirical evidence that repeated ivermectin mass treatments may lead to elimination/eradication in West-Africa. Filaria Journal 2, 8.Google Scholar
Chagas, A.C.S., Viera, L.S., Freitas, A.R., Araujo-Filho, J.A., Aranguao, W.R. & Navarro, A.M.C. (2008) Anthelmintic efficacy of neem (Azadirachta indica A. Juss) and the homeopathic product factor Vermes in Morada Nova sheep. Veterinary Parasitology 15, 6873.Google Scholar
Cho-Ngwa, F., Abongwa, M., Ngemenya, M.N. & Nyongbela, K.D. (2010) Selective activity of extracts of Margaritaria discoidea and Homalium africanum on Onchocerca ochengi. BMC Complementary and Alternative Medicine. October 28 10:62. doi:10.1186/1472-6882-10-62.Google Scholar
Culetto, E., Baylis, H.A., Richmond, J.E., Jones, A.K., Fleming, J.T., Squire, M.D., Lewis, J.A. & Sattelle, D.B. (2004) The Caenorhabditis elegans unc-63 gene encodes a levamisole sensitive nicotinic acetylcholine. Journal of Biological Chemistry 279, 4247642483.CrossRefGoogle ScholarPubMed
Curto, V.E., Kwong, C., Hermersdorfer, H., Glatt, H., Santis, C., Virador, V., Hearing, J.V. & Dooley, P.T. (1999) Inhibitors of mammalian melanocyte tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochemical Pharmacology 57, 663672.CrossRefGoogle ScholarPubMed
Dent, J.A., Smith, M.M., Vassilatis, D.K. & Avery, L. (2000) The genetics of ivermectin resistance in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, USA 97, 26742679.Google Scholar
Driscoll, M., Dean, E., Reilly, E., Bergholz, E. & Chalfie, M. (1989) Genetic and molecular analysis of a Caenorhabditis elegans β-tubulin that conveys benzimidazole sensitivity. Journal of Cell Biology 109, 29933003.CrossRefGoogle ScholarPubMed
Fakae, B.B., Campbell, A.M., Barrett, J., Scott, I.M., Teesdale-Spittle, P.H., Liebau, E. & Brophy, P.M. (2000) Inhibition of glutathione S-transferases (GSTs) from parasitic nematodes by extracts from traditional Nigerian medicinal plants. Phytotherapy Research 14, 630634.Google Scholar
Gansane, A., Sanon, S., Ouattara, L.P., Traoré, A., Hutter, S., Ollivier, E., Azas, N., Traore, A.S., Guissou, I.P., Sirima, S.B. & Nebié, I. (2010) Antiplasmodial activity and toxicity of crude extracts from alternatives parts of plants widely used for the treatment of malaria in Burkina Faso: contribution for their preservation. Parasitology Research 106, 335340.Google Scholar
Gendrel, M., Rapti, G., Richmond, J.E. & Bessereau, J.L. (2009) A secreted complement-control-related protein ensures acetylcholine receptor clustering. Nature 461, 992996.CrossRefGoogle ScholarPubMed
Hoste, H., Brunet, S., Paolini, V., Bahuaud, D., Chauveau, S., Fouraste, I. & Lefrileux, Y. (2009) Compared in vitro anthelmintic effects of eight tannin-rich plants browsed by goats in the southern part of France. Option Méditerrenéennes. Nutritional and foraging ecology of sheep and goats 85, 431436.Google Scholar
Kaewintajuk, K., Cho, P.Y., Kim, S.Y., Lee, E.S., Lee, H.K., Choi, E.B. & Park, H. (2010) Anthelmintic activity of KSI-4088 against Caenorhabditis elegans. Parasitology Research 107, 2730.CrossRefGoogle ScholarPubMed
Laughton, D.L., Lunt, G.G. & Wolstenholme, A.J. (1997) Reporter gene constructs suggest that the Caenorhabditis elegans avermectin receptor beta-subunit is expressed solely in the pharynx. Journal of Experimental Biology 200, 15091514.CrossRefGoogle ScholarPubMed
Lubega, G.W., Klein, R.D., Geary, T.G. & Prichard, R.K. (1994) Haemonchus contortus: the role of two β-tubulin gene subfamilies in the resistance to benzimidazole anthelmintics. Biochemical Pharmacology 47, 17051715.Google Scholar
Mann, A., Banso, A. & Clifford, L.C. (2008) An antifungal property of crude plant extracts from Anogeissus leiocarpus and Terminalia avicennioides. Tanzania Journal of Health Research 10, 3438Erratum in: Tanzania Journal of Health Research 10, 82.CrossRefGoogle ScholarPubMed
Monglo, D.L., Njongmeta, M., Musongong, G., Ngassoum, M. & Nukenine, E.N. (2006) Evaluation of anthelmintic potential of ethanolic extracts from northern Cameroon against eggs and infective larvae of Haemonchus contortus. Journal of Biological Sciences 6, 426433.Google Scholar
Moussala, M., Fobi, G., Zogo, O., Hiag, B.L.A., Bengono, G. & McMoli, T.E. (2004) Survenue d'hémorragies rétiniennes lors du traitement de l'onchocercose par l'invermectine chez une patiente co-infectée par la loase. Journal Français d'Opthalmologie 27, 6366.Google Scholar
Ndjonka, D., Agyare, C., Lüersen, K., Djafsia, B., Achukwi, D., Nukenine, E.N., Hensel, A. & Liebau, E. (2011) In vitro activity of Cameroonian and Ghanaian medicinal plants on parasitic (Onchocerca ochengi) and free-living (Caenorhabditis elegans) nematodes. Journal of Helminthology 85, 304312.CrossRefGoogle ScholarPubMed
Ndjonka, D., Ajonina-Ekoti, I., Djafsia, B., Lüersen, K., Abladam, E. & Liebau, E. (2012a) Anogeissus leiocarpus extract on the parasite nematode Onchocerca ochengi and on drug resistant mutant strains of the free-living nematode Caenorhabditis elegans. Veterinary Parasitology 190, 136142.CrossRefGoogle ScholarPubMed
Ndjonka, D., Bergmann, B., Agyare, C., Lüersen, K., Hensel, A., Wrenger, C. & Liebau, E. (2012b) In vitro activity of extracts and isolated polyphenols from West African medicinal plants against Plasmodium falciparum. Parasitology Research 111, 827834.Google Scholar
OECD (Organization for Economic Cooperation and Development) (2001) Guidelines for the testing of chemicals, No 423. Acute Oral Toxicity – Acute Toxic Class Method. ISSN: 2074-5788 (online), doi:10.1787/20745788.Google Scholar
Osei-Tweneboana, M.Y., Eng, J.K.L., Boakye, D.A., Gyapong, J.O. & Prichard, R.K. (2007) Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet 369, 20212029.Google Scholar
Rajalakshmi, K., Devaraj, H. & Devaraj, N.S. (2001) Assessment of the no-observed-adverse-effect level (NOAEL) of gallic acid in mice. Food and Chemical Toxicology 39, 919922.Google Scholar
Roos, M.H., Boersema, J.H., Borgsteede, F.H., Cornelissen, J., Taylor, M. & Ruitenberg, E.J. (1990) Molecular analysis of selection for benzimidazole resistance in the sheep parasite Haemonchus contortus. Molecular and Biochemical Parasitology 43, 7788.Google Scholar
Shuaibu, M.N., Wuyep, P.T., Yanagi, T., Hirayama, K., Ichinose, A., Tanaka, T. & Kouno, I. (2008a) Trypanocidal activity of extracts and compounds from the stem bark of Anogeissus leiocarpus and Terminalia avicennoides. Parasitology Research 102, 697703.CrossRefGoogle ScholarPubMed
Shuaibu, M.N., Pandey, K., Wuyep, P.T., Yanagi, T., Hirayama, K., Ichinose, A., Tanaka, T. & Kouno, I. (2008b) Castalagin from Anogeissus leiocarpus mediates the killing of Leishmania in vitro. Parasitology Research 103, 13331338.CrossRefGoogle Scholar
Smith, A.R., Pontiggia, L., Waterman, C., Lichtenwalner, M. & Wasserman, J. (2009) Comparison of motility, recovery, and methyl-thiazolyl-tetrazolium reduction assays for use in screening plant products for anthelmintic activity. Parasitology Research 105, 13391343.Google Scholar
Soh, N.P., Witkowski, B., Olagnier, D., Nicolau, L.M., Garcia-Alvarez, M.C., Berry, A. & Vical, B.F. (2009) In vitro and in vivo properties of ellagic acid in malaria treatment. Antimicrobial Agents and Chemotherapy 53, 11001106.Google Scholar
Winnen, M., Plaisier, A.P., Alley, E.S., Nagelkerke, N.J., van Oortmarssen, G., Boatin, B.A. & Habbema, J.D. (2002) Can ivermectin mass treatments eliminate onchocerciasis in Africa? Bulletin of the World Health Organization 80, 384391.Google Scholar
World Health Organization (1995) Onchocerciasis and its control. Report of a WHO Expert Committee on Onchocerciasis Control, Technical Report Series No. 852. Geneva, World Health Organization.Google Scholar
Yates, D.M., Portillo, V. & Wolstenholme, A.J. (2003) The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans. International Journal of Parasitology 33, 11831193.CrossRefGoogle ScholarPubMed