Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T09:22:27.648Z Has data issue: false hasContentIssue false

Arctic systems in the Quaternary: ecological collision, faunal mosaics and the consequences of a wobbling climate

Published online by Cambridge University Press:  17 April 2017

E.P. Hoberg*
Affiliation:
Animal Parasitic Diseases Laboratory, Beltsville Research Center, Agricultural Research Service, USDA, BARC East 1180, Beltsville, Maryland, USA
J.A. Cook
Affiliation:
Museum of Southwestern Biology and Biology Department, University of New Mexico, Albuquerque, New Mexico, USA
S.J. Agosta
Affiliation:
Center for Environmental Studies and Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA
W. Boeger
Affiliation:
Laboratório de Ecologia Molecular e Parasitologia Evolutiva, Universidade Federal do Paraná, Caixa Postal 19073, Curitiba, PR 81531-980, Brazil
K.E. Galbreath
Affiliation:
Biology Department, Northern Michigan University, Marquette, Michigan, USA
S. Laaksonen
Affiliation:
Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
S.J. Kutz
Affiliation:
Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
D.R. Brooks
Affiliation:
Institute for Advanced Studies, Koszeg, Europe House, Kőszeg Chernel st. 14, H-9730 Hungary

Abstract

Climate oscillations and episodic processes interact with evolution, ecology and biogeography to determine the structure and complex mosaic that is the biosphere. Parasites and parasite–host assemblages are key components in a general explanatory paradigm for global biodiversity. We explore faunal assembly in the context of Quaternary time frames of the past 2.6 million years, a period dominated by episodic shifts in climate. Climate drivers cross a continuum from geological to contemporary timescales and serve to determine the structure and distribution of complex biotas. Cycles within cycles are apparent, with drivers that are layered, multifactorial and complex. These cycles influence the dynamics and duration of shifts in environmental structure on varying temporal and spatial scales. An understanding of the dynamics of high-latitude systems, the history of the Beringian nexus (the intermittent land connection linking Eurasia and North America) and downstream patterns of diversity depend on teasing apart the complexity of biotic assembly and persistence. Although climate oscillations have dominated the Quaternary, contemporary dynamics are driven by tipping points and shifting balances emerging from anthropogenic forces that are disrupting ecological structure. Climate change driven by anthropogenic forcing has supplanted a history of episodic variation and is eliminating ecological barriers and constraints on development and distribution for pathogen transmission. A framework to explore interactions of episodic processes on faunal structure and assembly is the Stockholm Paradigm, which appropriately shifts the focus from cospeciation to complexity and contingency in explanations of diversity.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agosta, S.J. & Klemens, J.A. (2008) Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecology Letters 11, 11231134.CrossRefGoogle ScholarPubMed
Agosta, S.J., Janz, N. & Brooks, D.R. (2010) How specialists can be generalists: resolving the ‘parasite paradox’ and implications for emerging infectious disease. Zoologia 27, 151162.CrossRefGoogle Scholar
Araujo, S.B.L., Braga, M.P., Brooks, D.R., Agosta, S., Hoberg, E.P., von Hathental, F. & Boeger, W.A. (2015) Understanding host-switching by ecological fitting. PLoS One 10, e0139225.Google Scholar
Barnosky, A.D., Hadley, E.A., Bascompte, J. et al. (2012) Approaching a state shift in Earth's biosphere. Nature 486, 5258.Google Scholar
Bell, K.C., Calhoun, K., Hoberg, E.P., Demboski, J.R. & Cook, J.A. (2016) Temporal and spatial mosaics: deep host association and shallow geographic drivers shape genetic structure in a widespread pinworm, Rauschtineria eutamii (Nematoda: Oxyuridae). Biological Journal of the Linnean Society 119, 397413.Google Scholar
Brooks, D.R. (1979) Testing the context and extent of host–parasite coevolution. Systematic Zoology 28, 299307.Google Scholar
Brooks, D.R. & Hoberg, E.P. (2000) Triage for the biosphere: The need and rationale for taxonomic inventories and phylogenetic studies of parasites. Comparative Parasitology 67, 125.Google Scholar
Brooks, D.R. & Hoberg, E.P. (2013) The emerging infectious diseases crisis and pathogen pollution: a question of ecology and evolution. pp. 215229 in Rohde, K. (Ed.) The balance of nature and human impact. Cambridge, Cambridge University Press.Google Scholar
Brooks, D.R. & McLennan, D.A. (1993) Parascript: Parasites and the language of evolution. Washington, DC, Smithsonian Institution Press.Google Scholar
Brooks, D.R. & McLennan, D.A. (2002) The nature of diversity: An evolutionary voyage of discovery. Chicago, University of Chicago Press.Google Scholar
Brooks, D.R., Hoberg, E.P., Gardner, S.L., Boeger, W., Galbreath, K.E., Herczeg, D., Mejía-Madrid, H.H., Racz, E. & Tsogtsaikhan Dursahinhan, A. (2014) Finding them before they find us: informatics, parasites and environments in accelerating climate change. Comparative Parasitology 81, 155164.Google Scholar
Brooks, D.R., Hoberg, E.P. & Boeger, W.A. (2015) In the eye of the Cyclops – re-examining the classic case of cospeciation: why paradigms are important. Comparative Parasitology 82, 18.CrossRefGoogle Scholar
Callaghan, T.V., Björn, L.O., Chernov, Y., Chapin, T., Christensen, T.R., Huntley, B., Ims, R.A., Johansson, M., Jolly, D., Jonasson, S., Matveyeva, N., Panikov, N., Oechel, W. & Shaver, G. (2004a) Past changes in arctic terrestrial ecosystems, climate and UV radiation. Ambio 33, 398403.Google Scholar
Callaghan, T.V., Björn, L.O., Chernov, Y., Chapin, T., Christensen, T.R., Huntley, B., Ims, R.A., Johansson, M., Jolly, D., Jonasson, S., Matveyeva, N., Panikov, N., Oechel, W., Shaver, G., Elster, J., Henttonen, H., Laine, K., Taulavuori, K., Taulavuori, E. & Zöckler, C. (2004b) Biodiversity, distributions and adaptations of Arctic species in the context of environmental change. Ambio 33, 404417.Google Scholar
Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H.M. (2015) The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 12481251.CrossRefGoogle ScholarPubMed
Chavez, F.P., Ryan, J., Lluch-Cota, S.E. & Ñiquen, C. M. (2003) From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299, 217221.Google Scholar
Cook, J.A., Galbreath, K.E., Bell, K.C. et al. (2017) The Beringian Coevolution Project: holistic collections of mammals and associated parasites reveal novel perspectives on changing environments in the north. Arctic Science, in press.Google Scholar
Denton, G.H., Anderson, R.F., Togweiller, J.R., Edwards, R.L., Schaefer, J.M. & Putnam, A.E. (2010) The last glacial termination. Science 328, 16521656.Google Scholar
de Vienne, D.M., Refregier, G., Lopez-Villavicencio, M., Tellier, A., Hood, M.E. & Giraud, T. (2013) Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytologist 198, 347385.Google Scholar
Dobson, A., Lafferty, K.D., Kuris, A.M., Hechinger, R.F. & Jetz, W. (2008) Homage to Linnaeus: How many parasites? How many hosts? Proceedings of the National Academy of Sciences, USA 105, 1148211489.Google Scholar
Dynesius, M. & Jansson, R. (2000) Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences, USA 97, 91159120.Google Scholar
Elton, C.S. (1958) The ecology of invasions by animals and plants. London, Methuen.Google Scholar
Erwin, T.L. (1985) The taxon pulse: a general pattern of lineage radiation and extinction among carabid beetles. pp. 437472 in Ball, G.E. (Ed.) Taxonomy, phylogeny, and biogeography of beetles and ants. Dordrecht, W. Junk.Google Scholar
Galaktionov, K.V. (2017) Patterns and processes affecting helminth parasites of the Arctic coastal communities during climate change. Journal of Helminthology, in press.Google Scholar
Galaktionov, K.V., Blasco-Costa, I. & Olson, P.D. (2012) Life cycles, molecular phylogeny and historical biogeography of the ‘pygmaeus’ microphallids (Digenea: Microphallidae): widespread parasites of marine and coastal birds in the Holarctic. Parasitology 139, 13461360.Google Scholar
Galbreath, K.E. & Hoberg, E.P. (2012) Return to Beringia: parasites reveal cryptic biogeographic history of North American pikas. Proceedings of the Royal Society, B 279, 371378.Google Scholar
Galbreath, K.E. & Hoberg, E.P. (2015) Host responses to historical climate change shape parasite communities in North America's Intermountain West. Folia Zoologica 64, 218232.Google Scholar
Halas, D., Zamparo, D. & Brooks, D.R. (2005) A historical biogeographical protocol for studying diversification by taxon pulses. Journal of Biogeography 32, 249260.Google Scholar
Harris, S.A. (2005) Thermal history of the Arctic Ocean environs adjacent to North America during the last 3.5 Ma and a possible mechanism for the cause of the cold events (major glaciations and permafrost events). Progress in Physical Geography 2, 218237.Google Scholar
Harvell, C.D., Mitchell, C.E., Ward, J.R., Altizer, S., Dobson, A.P., Ostfeld, R.S. & Samuel, M.D. (2002) Climate warming and disease risks for marine and terrestrial biota, Science 296, 21582162.Google Scholar
Haukisalmi, V., Hardman, L.M., Hoberg, E.P. & Henttonen, H. (2014) Phylogenetic relationships and taxonomic revision of Paranoplocephala Lühe, 1910 sensu lato (Cestoda, Cyclophyllidea, Anoplocephalidae). Zootaxa 3873, 371415.Google Scholar
Haukisalmi, V., Hardman, L.M., Fedorov, V., Hoberg, E.P. & Henttonen, H. (2016) Molecular systematics and phylogeography of cestodes of the genus Anoplocephaloides Baer, 1923 s. s. (Cyclophyllidea: Anoplocephalidae) in lemmings (Lemmus, Synaptomys). Zoologica Scripta 45, 88102.Google Scholar
Henry, L.G., McManus, J.F., Curry, W.B., Roberts, N.L., Piotrowski, A.M. & Keigwin, L.D. (2016) North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 353, 470474.Google Scholar
Hewitt, G.M. (2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society B 359, 183195.Google Scholar
Hoberg, E.P. (1992) Congruent and synchronic patterns in biogeography and speciation among seabirds, pinnipeds and cestodes. Von Ihering Centenary Symposium in Biogeography and Coevolution. Journal of Parasitology 78, 601615.Google Scholar
Hoberg, E.P. (1995) Historical biogeography and modes of speciation across high latitude seas of the Holarctic: concepts for host–parasite coevolution among the Phocini (Phocidae) and Tetrabothriidae (Eucestoda). Canadian Journal of Zoology 73, 4557.Google Scholar
Hoberg, E.P. (1996) Faunal diversity among avian parasite assemblages: the interaction of history, ecology and biogeography. Bulletin of the Scandinavian Society of Parasitology 6, 6589.Google Scholar
Hoberg, E.P. (1997) Phylogeny and historical reconstruction: host parasite systems as keystones in biogeography and ecology. pp. 243261 in Reaka-Kudla, M., Wilson, E.O. & Wilson, D. (Eds) Biodiversity II: Understanding and protecting our resources. Washington, DC, Joseph Henry Press, National Academy of Sciences.Google Scholar
Hoberg, E.P. (2005) Coevolution and biogeography among Nematodirinae (Nematoda: Trichostrongylina), Lagomorpha and Artiodactyla (Mammalia): exploring determinants of history and structure for the northern fauna across the Holarctic. Journal of Parasitology 91, 358369.Google Scholar
Hoberg, E.P. (2010) Invasive processes, mosaics and the structure of helminth parasite faunas. Revue Scientifique et Technique Office International des Épizooties 29, 255272.Google Scholar
Hoberg, E.P. & Adams, A. (2000) Phylogeny, history and biodiversity: understanding faunal structure and biogeography in the marine realm. Bulletin of the Scandinavian Society of Parasitology 10, 1937.Google Scholar
Hoberg, E.P. & Brooks, D.R. (2008) A macroevolutionary mosaic: episodic host-switching, geographic colonization, and diversification in complex host–parasite systems. Journal of Biogeography 35, 15331550.Google Scholar
Hoberg, E.P. & Brooks, D.R. (2010) Beyond vicariance: integrating taxon pulses, ecological fitting and oscillation in historical biogeography and evolution. pp. 720 in Morand, S. & Krasnov, B. (Eds) The geography of host-parasite interactions. Oxford, Oxford University Press.Google Scholar
Hoberg, E.P. & Brooks, D.R. (2013) Episodic processes, invasion, and faunal mosaics in evolutionary and ecological time. pp. 199213 in Rohde, K. (Ed.) The balance of nature and human impact. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Hoberg, E.P. & Brooks, D.R. (2015) Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philosophical Transactions of the Royal Society B 370, 20130553. dx.doi.org/10.1098/rstb.2013.0553. Google Scholar
Hoberg, E.P. & Zarlenga, D.S. (2016) Evolution and biogeography of Haemonchus contortus, linking faunal dynamics in space and time. Haemonchus contortus and Haemonchosis: past, present and future trends. Advances in Parasitology 93, 130.Google Scholar
Hoberg, E.P., Polley, L., Jenkins, E.J., Kutz, S.J., Veitch, A.M. & Elkin, B.T. (2008a) Integrated approaches and empirical models for investigation of parasitic diseases in northern wildlife. Emerging Infectious Disease 14, 1017.Google Scholar
Hoberg, E.P., Polley, L., Jenkins, E.J. & Kutz, S.J. (2008b) Pathogens of domestic and free-ranging ungulates: global climate change in temperate to boreal latitudes across North America. Revue Scientifique et Technique Office International des Épizooties 27, 511528.Google Scholar
Hoberg, E.P., Galbreath, K.E., Cook, J.A., Kutz, S.J. & Polley, L. (2012) Northern host–parasite assemblages: history and biogeography on the borderlands of episodic climate and environmental transition. Advances in Parasitology 79, 197.Google Scholar
Hoberg, E.P., Kutz, S.J., Cook, J.A., Galaktionov, K., Haukisalmi, V., Henttonen, H., Laaksonen, S., Makarikov, A. & Marcogliese, D.J. (2013) Parasites in terrestrial, freshwater and marine systems. pp. 476505 in Meltofte, H. (Ed.) Arctic biodiversity assessment – status and trends in Arctic biodiversity. Akureyi, Iceland, Conservation of Arctic Flora and Fauna, Arctic Council.Google Scholar
Hoberg, E.P., Agosta, S.J., Boeger, W.A. & Brooks, D.R. (2015) An integrated parasitology: revealing the elephant through tradition and invention. Trends in Parasitology 31, 128133.Google Scholar
Hope, A.G., Waltari, E.C., Payer, D.C., Cook, J.A. & Talbot, S.L. (2013a) Future distribution of tundra refugia in Alaska. Nature Climate Change 3, 931938.Google Scholar
Hope, A.G., Takebayashi, N., Galbreath, K.E., Talbot, S.L. & Cook, J.A. (2013b) Temporal, spatial and ecological dynamics of speciation among amphi-Beringian small mammals. Journal of Biogeography 40, 415429.Google Scholar
Hope, A.G., Waltari, E., Malaney, J.L., Payer, D.C., Cook, J.A. & Talbot, S.L. (2015) Arctic biodiversity: increasing richness accompanies shrinking refugia for a cold-associated tundra fauna. Ecosphere 6, 167.Google Scholar
Hope, A.G., Greiman, S.E., Tkach, V.V., Hoberg, E.P. & Cook, J.A. (2016) Shrews and their parasites: small species indicate big changes? Arctic Report Card. Available at http://www.arctic.noaa.gov/Report-Card/Report-Card-2016 (accessed 1 April 2017).Google Scholar
Hopkins, D.M. (1959) Cenozoic history of the Bering land bridge. Science 129, 15191528.Google Scholar
Hopkins, D.M. (1982) Paleogeography. pp. 12 in Hopkins, D.M., Matthews, J.V. Jr, Schweger, C.E. & Young, S.B. (Eds) Paleoecology of Beringia. New York, Academic Press.Google Scholar
Hurrell, J.W., Kushnir, Y., Otterson, G. & Visbeck., M. (2003) An overview of the North Atlantic Oscillation. Geophysical Monographs 134, 135.Google Scholar
IPCC. (2013) Summary for Policymakers. pp. 0000 in Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. (Eds) Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK, Cambridge University Press.Google Scholar
IPCC. (2014) Summary for policymakers. pp. 132 in Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R. & White, L.L. (Eds) Climate Change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press. Cambridge, Cambridge University Press.Google Scholar
Jansen, E., Overpeck, J., Briffa, K.R., Duplessy, J.-C., Joos, F., Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W.R., Rahmstorf, S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O., Villalba, R. & Zhang, D. (2007) Palaeoclimate. pp. 434497 in Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H.L. (Eds) Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK, Cambridge University Press.Google Scholar
Jansson, R. & Dynesius, M. (2002) The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annual Review of Ecology and Systematics 33, 741747.Google Scholar
Janz, N. & Nylin, S. (2008) The oscillation hypothesis of host plant-range and speciation. pp. 203215 in Tilmon, K.J. (Ed.) Specialization, speciation, and radiation: The evolutionary biology of herbivorous insects. Berkeley, University of California Press.Google Scholar
Janzen, D.H. (1985) On ecological fitting. Oikos 45, 308310.Google Scholar
Jenkins, E.J., Veitch, A.M., Kutz, S.J., Hoberg, E.P. & Polley, L. (2006) Climate change and the epidemiology of protostrongylid nematodes in northern ecosystems: Parelaphostrongylus odocoilei and Protostrongylus stilesi in Dall's sheep (Ovis d. dalli). Parasitology 132, 387401.Google Scholar
Jenkins, E.J., Castrodale, L.J., de Rosemond, S.J., Dixon, B.R., Elmore, S.A., Gesy, K.M., Hoberg, E.P., Polley, L., Schurer, J.M., Simard, M. & Thompson, R.C. (2013) Tradition and transition: parasitic zoonoses of people and animals in Alaska, Northern Canada, and Greenland. Advances in Parasitology 82, 36204.Google Scholar
Klassen, G.J. (1992) Coevolution: a history of the macroevolutionary approach to studying host parasite associations. Journal of Parasitology 78, 573587.Google Scholar
Koehler, A.V.A., Hoberg, E.P., Dokuchaev, N.E., Trabenkova, N.A., Whitman, J.S., Nagorsen, D.W. & Cook, J.A. (2009) Phylogeography of a Holarctic nematode, Soboliphyme baturini among mustelids: climate change, episodic colonization and diversification in a complex host–parasite system. Biological Journal of the Linnean Society 96, 651663.Google Scholar
Kutz, S., Hoberg, E.P. & Polley, L. (2001) A new lungworm in muskoxen: an exploration in Arctic parasitology. Trends in Parasitology 17, 276280.CrossRefGoogle ScholarPubMed
Kutz, S.J., Hoberg, E.P., Polley, L. & Jenkins, E.J. (2005) Global warming is changing the dynamics of Arctic host–parasite systems. Proceedings of the Royal Society London, B 272, 25712576.Google ScholarPubMed
Kutz, S.J., Checkley, S., Verocai, G.G., Dumond, M., Hoberg, E.P., Peacock, R., Wu, J., Orsel, K., Seegers, K., Warren, A. & Abrams, A. (2013) Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic. Global Change Biology 19, 32543262.Google Scholar
Kutz, S., Hoberg, E.P., Molnár, P.K., Dobson, A. & Verocai, G. (2014) A walk on the tundra: host–parasite interactions in an extreme environment. International Journal for Parasitology – Parasites and Wildlife 3, 198208.Google Scholar
Laaksonen, S., Pusenious, J., Kumpula, J., Venäläinen, A., Kortet, R., Oksanen, A. & Hoberg, E.P. (2010) Climate change promotes the emergence of serious disease outbreaks of filarioid nematodes. EcoHealth 7, 713.Google Scholar
Laaksonen, S., Oksanen, A. & Hoberg, E. (2015) A lymphatic dwelling filarioid nematode, Rumenfilaria andersoni (Filarioidea; Splendidofilariinae), is an emerging parasite in Finnish cervids. Parasites and Vectors 8, 228. doi 10.1186/s13071-015-0835-0.Google Scholar
Laaksonen, S., Oksanen, A., Kutz, S., Jokelainen, P., Holma-Suutari, A. & Hoberg, E. (2017) Filarioid nematodes, threat to arctic food safety and security – bioinvasion of vector-borne filarioid nematodes in the arctic and boreal ecosystems. pp. 101120 in Paulsen, P., Bauer, A. & Smulders, F.J.M. (Eds) Game meat hygiene: Food safety and security. Wageningen, The Netherlands, Wageningen Academic Publishers.Google Scholar
Lafferty, K.D. (2009) The ecology of climate change and infectious diseases. Ecology 90, 888900.Google Scholar
Lafferty, K.D., Dobson, A.P. & Kuris, A.M. (2006) Parasites dominate food web links. Proceedings of the National Academy of Sciences, USA 103, 1121111216.Google Scholar
Lawler, J.J., Shafer, S.L., White, D., Karieva, P., Maurer, E.P., Blaustein, A.R. & Bartlein, P.J. (2009) Projected climate-induced faunal change in the Western Hemisphere. Ecology 90, 588597.Google Scholar
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González Rouco, J.F., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X. & Timmermann, A. (2013) Information from Paleoclimate Archives. pp. 383464 in Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. (Eds) Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK, Cambridge University Press.Google Scholar
Meltofte, H., Barry, T., Berteaux, D. et al. (2013) Status and trends in Arctic biodiversity – synthesis: implications for conservation. pp. 2166 in Meltofte, H. (Ed.) Arctic biodiversity assessment – status and trends in Arctic biodiversity. Akureyi, Iceland, Conservation of Arctic Flora and Fauna, Arctic Council.Google Scholar
Mouritsen, K.M. & Poulin, R. (2002) Parasitisim, climate oscillations and the structure of natural communities. Oikos 97, 462468.Google Scholar
Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics 37, 637669.Google Scholar
Pinksy, M.L., Worm, B., Fogarty, M.J., Sarmiento, J.L. & Levin, S.A. (2013) Marine taxa track local climate velocities. Science 341, 12391242.Google Scholar
Rausch, R.L. (1994) Transberingian dispersal of cestodes in mammals. International Journal for Parasitology 24, 12031212.Google Scholar
Repenning, C.A. (1980) Faunal exchanges between Siberia and North America. Canadian Journal of Anthropology 1, 3744.Google Scholar
Repenning, C.A. (2001) Beringian climate during intercontinental dispersal: a mouse eye view. Quaternary Science Reviews 20, 2540.Google Scholar
Ruddiman, W.F. (2013) The Anthropocene. Annual Review of Earth and Planetary Sciences 41, 4568.Google Scholar
Scheffers, B.R., De Meester, L., Bridge, T.C.L., Hoffmann, A.A., Pandolfi, J.M., Corlett, R.T., Butchart, S.H.M., Pearce-Kelly, P., Kovacs, K.M., Dudgeon, D., Pacifici, M., Rondinini, C., Foden, W.B., Martin, T.G., Mora, C., Bickford, D. & Watson, J.E.M. (2016) The broad footprint of climate change from genes to biomes to people. Science 354, 6313.Google Scholar
Schmittner, A. (2016) The smoking gun for Atlantic circulation changes. Science 353, 445446.Google Scholar
Shafer, A.B.A., Cullingham, C.I., Côté, S.D. & Coltman, D.W. (2010) Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Molecular Ecology 19, 45894621.Google Scholar
Steffen, W., Grinevald, J., Crutzen, P. & McNeil, J. (2011) The Anthropocene: conceptual and historical perspectives. Philosophical Transactions of the Royal Society 369, 842867.Google Scholar
Stigall, A.L. (2010) Invasive species and biodiversity crises: Testing the link in the late Devonian. PLoS One 5, e15584.Google Scholar
Stigall, A.L., Bauer, J.E., Lam, A.R. & Wright, D.F. (2017) Biotic immigration events, speciation and the accumulation of biodiversity in the fossil record. Global and Planetary Change 148, 242257.Google Scholar
Stocker, T.F., Qin, D., Plattner, G.-K. et al. (2013) Technical summary. pp. 33115 in Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. (Eds) Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK, Cambridge University Press.Google Scholar
Sydeman, W.J., Poloczanska, E., Reed, T.E. & Thompson, S.A. (2015) Climate change and marine vertebrates. Science 350, 772777.Google Scholar
Thompson, J.N. (2005) The geographic mosaic of coevolution. Chicago, University of Chicago Press.Google Scholar
Trenberth, K.E., Jones, P.D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J.A., Rusticucci, M., Soden, B. & Zhai, P. (2007) Observations: surface and atmospheric climate change. pp. 236335 in Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H.L. (Eds) Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK, Cambridge University Press.Google Scholar
Waltari, E., Hoberg, E.P., Lessa, E.P. & Cook, J.A. (2007) Eastward ho: phylogeographic perspectives on colonization of hosts and parasites across the Beringian nexus. Journal of Biogeography 34, 561574.Google Scholar
Waters, C.N., Zalasiewicz, J., Summerhayes, C. et al. (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622 doi: 10.1126/science.aad2622 Google Scholar
Wernberg, T., Bennett, S., Babock, R.C. et al. (2016) Climate driven regime shift of a temperate marine ecosystem. Science 353, 169172.Google Scholar