Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T09:57:21.601Z Has data issue: false hasContentIssue false

Biodiversity of trematodes associated with amphibians from a variety of habitats in Corrientes Province, Argentina

Published online by Cambridge University Press:  04 July 2012

M.I. Hamann*
Affiliation:
CONICET-CECOAL, ruta 5, km 2.5, W 3400 AMD, Corrientes, Argentina
A.I. Kehr
Affiliation:
CONICET-CECOAL, ruta 5, km 2.5, W 3400 AMD, Corrientes, Argentina
C.E. González
Affiliation:
CONICET-CECOAL, ruta 5, km 2.5, W 3400 AMD, Corrientes, Argentina

Abstract

The main goals of this study were to compare the richness of parasitic trematodes in amphibians with diverse habits (terrestrial, fossorial, semi-aquatic and arboreal), and to evaluate whether the composition of the trematode community is determined by ecological relationships. Specimens were collected between April 2001 and December 2006 from a common area (30 ha) in Corrientes Province, Argentina. Trematodes of amphibians in this area comprised a total of 19 species, and were dominated by common species. Larval trematodes presented highest species richness, with the metacercaria of Bursotrema tetracotyloides being dominant in the majority (7/9, 78%) of the parasite communities. Adults of the trematode Catadiscus inopinatus were dominant in the majority (6/9, 67%) of amphibians. The amphibians Leptodactylus latinasus, Leptodactylus bufonius and Scinax nasicus presented a high diversity of trematodes, whereas Leptodactylus chaquensis had the lowest diversity even though it presented with the highest species richness. The patterns of similarity among amphibian species showed groups linking with their habitats. Leptodactilid amphibians, with a generalist diet and an active foraging strategy showed highest infection rates with adult trematodes. The mean richness of trematode species related to host's habitat preferences was higher in semi-aquatic amphibians. Results suggest that semi-aquatic amphibians, present in both aquatic and terrestrial environments, present a greater diversity of parasites as they have a higher rate of exposure to a wider range of prey species and, hence, to diverse infective states. The trematode composition is related to the diets and mobility of the host, and habitat.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addinsoft (2004) Xlstat for Excel, version 7.5. New York, NY, Addinsoft.Google Scholar
Aho, J.M. (1990) Helminth communities of amphibians and reptiles: comparative approaches to understanding patterns and processes. pp. 157196in Esch, G.W., Bush, A.O. & Aho, J.M. (Eds) Parasite communities: patterns and processes. London, Chapman & Hall.CrossRefGoogle Scholar
Bolek, M.G. & Coggins, J.R. (2003) Helminth community structure of sympatric eastern American toad, Bufo americanus americanus, northern leopard frog, Rana pipiens, and blue-spotted salamander, Ambystoma laterale, from southeastern Wisconsin. Journal of Parasitology 89, 673680.CrossRefGoogle ScholarPubMed
Bolek, M.G., Snyder, S.D. & Janovy, J. Jr (2009) Alternative life cycle strategies and colonization of young anurans by Gorgoderina attenuata in Nebraska. Journal of Parasitology 95, 604616.CrossRefGoogle ScholarPubMed
Bouix-Busson, D., Rondelaud, D. & Combes, C. (1985) L'infestation de Lymnaea glabra Müller par Fasciola hepatica L.: les caractéristiques des émissions cercariennes. Annales de Parasitologie Humaine et Comparée 60, 1121.CrossRefGoogle Scholar
Bush, A.O. & Holmes, J.C. (1986) Intestinal helminthes of lasser scaup ducks: patterns of association. Canadian Journal of Zoology 64, 132141.CrossRefGoogle Scholar
Bush, A.O., Aho, J.M. & Kennedy, C.R. (1990) Ecological versus phylogenetic determinants of helminth parasite community richness. Evolutionary Ecology 4, 120.CrossRefGoogle Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Carnevali, R. (1994) Fitogeografía de la provincial de Corrientes. 324 pp. Paraguay, Litocolor.Google Scholar
Crump, M.L. & Scott, N.J. Jr (1994) Visual encounters surveys. pp. 8491in Heyer, W.R., Donnelly, M.A., McDiarmid, R.W., Hayek, L.C. & Foster, M.S. (Eds) Measuring and monitoring biological diversity – standard methods for amphibians. Washington, Washington Smithsonian Institution Press.Google Scholar
Duré, M.I. (2004) Estructura trófica y aspectos ecológicos de los gremios de una comunidad de anfibios de la Provincia de Corrientes. Unpublished PhD thesis, Universidad Nacional de La Plata, Buenos Aires, Argentina.Google Scholar
Duré, M.I., Schaefer, E.F., Hamann, M.I. & Kehr, A.I. (2004) Consideraciones ecológicas sobre la dieta, reproducción y el parasitismo de Pseudopaludicola boliviana (Anura: Leptodactylidae) de Corrientes, Argentina. Phyllomedusa 3, 121131.CrossRefGoogle Scholar
Esch, G.W. & Fernandez, J.C. (1993) A functional biology of parasitism: ecological and evolutionary implications. 337 pp. London, Chapman & Hall.CrossRefGoogle Scholar
Esch, G.W. & Fernandez, J.C. (1994) Snail–trematodes interactions and parasite community dynamics in aquatic systems: a review. American Midland Naturalist 131, 209237.CrossRefGoogle Scholar
Esch, G.W., Shostak, A.W. & Marcogliese, D.J. (1990) Patterns and processes in helminth parasite communities: an overview. pp. 118in Esch, G.W., Bush, A.O. & Aho, J.M. (Eds) Parasite communities: patterns and processes. London, Chapman & Hall.Google Scholar
Esch, G.W., Barger, A. & Fellis, K.J. (2002) The transmission of digenetic trematodes: style, elegance, complexity. Integrative and Comparative Biology 42, 304312.CrossRefGoogle ScholarPubMed
Gibson, D.I., Jones, A. & Bray, R.A. (2002) Keys to the Trematoda. Vol. 1. 521 pp. Wallingford, CABI Publishing and The Natural History Museum, London.CrossRefGoogle Scholar
Goater, T.M. & Goater, C.P. (2001) Ecological monitoring and assessment network (EMAN) protocols for measuring biodiversity: parasites of amphibians and reptiles. Available athttp://www.eman-rese.ca/eman/ecotools/protocols/terrestrial/herpparasites/intro.html (accessed accessed 14 February 2011).Google Scholar
Goater, T.M., Esch, G.W. & Bush, A.O. (1987) Helminth parasite of sympatric salamanders: ecological concepts at infracommunity, component and compound community levels. American Midland Naturalist 118, 289300.CrossRefGoogle Scholar
Gotelli, N.J. & Entsminger, G.L. (2004) EcoSim: null models software for ecology. Version 7. Acquired Intelligence Inc. and Kesey-Bear, Jericho, VT 05465. Available athttp://garyentsminger.com/ecosim/index.htm (accessed accessed 20 February 2012).Google Scholar
Grabda-Kazubska, B. (1963) The life cycle of Metalepthophallus gracillimus (Lühe, 1909) and some observations on the biology and morphology of developmental stages of Letophalus nigrovenosus (Bellingham, 1844). Acta Parasitologica Polonica 11, 349370.Google Scholar
Hamann, M.I. & González, C.E. (2009) Larval digenetic trematodes of tadpoles of six amphibian species from Northeastern Argentina. Journal of Parasitology 95, 623628.CrossRefGoogle ScholarPubMed
Hamann, M.I. & Kehr, A.I. (1998) Variación espacio temporal en infrapoblaciones de helmintos y su relación con las fluctuaciones poblacionales de Hyla nana (Anura, Hylidae). Cuadernos de Herpetología 12, 2333.Google Scholar
Hamann, M.I. & Kehr, A.I. (1999) Relaciones ecológicas entre metacercarias de Lophosicyadiplostomum sp. (Trematoda, Diplostomidae) y Lysapsus limellus Cope, 1862 (Anura, Pseudidae) en una población local del nordeste argentino. Facena 15, 3946.Google Scholar
Hamann, M.I., Kehr, A.I. & González, C.E. (2006a) Species affinity and infracommunity ordination of helminths of Leptodactylus chaquensis (Anura: Leptodactylidae) in two contrasting environments from northeastern Argentina. Journal of Parasitology 92, 11711179.CrossRefGoogle ScholarPubMed
Hamann, M.I., González, C.E. & Kehr, A.I. (2006b) Helminth community of Leptodactylus latinasus (Anura: Leptodactylidae) from Corrientes, Argentina. Acta Parasitologica 51, 294299.CrossRefGoogle Scholar
Hamann, M.I., Kehr, A.I., González, C.E., Dure, M.I. & Schaefer, E.F. (2009) Parasite and reproductive features of Scinax nasicus (Anura: Hylidae) from a South American subtropical area. Interciencia 34, 214218.Google Scholar
Hamann, M.I., Kehr, A.I. & González, C.E. (2010) Helminth community structure of Scinax nasicus (Anura: Hylidae) from a South American subtropical area. Diseases of Aquatic Organisms 93, 7182.CrossRefGoogle ScholarPubMed
Holmes, J.C. & Price, P.W. (1986) Communities of parasites. pp. 187213in Anderson, D.J. & Kikkawa, J. (Eds) Community ecology: Pattern and process. Oxford, Blackwell Scientific Publications.Google Scholar
Hudson, P.J., Dobson, A.P. & Lafferty, K.D. (2006) Is a healthy ecosystem one that is rich in parasites? Trends in Ecology and Evolution 21, 381385.CrossRefGoogle Scholar
Ibrahim, M.M.I. (2008) Helminth infracommunities of the maculated toad Amietophrynus regularis (Anura: Bufonidae) from Ismailia, Egypt. Diseases of Aquatic Organisms 82, 1926.CrossRefGoogle ScholarPubMed
Jones, A., Bray, R.A. & Gibson, D.I. (2005) Keys to the Trematoda. Vol. 2. 745 pp. Wallingford, CABI Publishing and The Natural History Museum, London.Google Scholar
Kehr, A.I., Manly, B.F.J. & Hamann, M.I. (2000) Influence of biotic and abiotic factors on helminth co-occurrences in Lysapsus limellus (Anura, Pseudidae) from an argentinean subtropical area. Oecologia 125, 549558.CrossRefGoogle ScholarPubMed
Kennedy, C.R., Bush, A.O. & Aho, J.M. (1986) Patterns in helminth communities: why are birds and fish different? Parasitology 93, 205215.CrossRefGoogle ScholarPubMed
King, K.C., McLaughlin, J.D., Gendron, A.D., Pauli, B.D., Giroux, I., Rondeau, B., Boily, M., Juneau, P. & Marcogliese, D.J. (2007) Impacts of agriculture on the parasite communities of northern leopard frogs (Rana pipiens) in southern Quebec, Canada. Parasitology 34, 20632080.CrossRefGoogle Scholar
King, K.C., Gendron, A.D., McLaughlin, J.D., Giroux, I., Brousseau, P., Cyr, D., Ruby, S.M., Fournier, M. & Marcogliese, D.J. (2008) Short-term seasonal changes in parasite community structure in northern leopard froglets (Rana pipiens) inhabiting agricultural wetlands. Journal of Parasitology 94, 1322.CrossRefGoogle ScholarPubMed
Leigh, W.H. (1946) Experimental studies on the life cycle of Glypthelmins quieta (Stafford, 1990) a trematode of frogs. American Midland Naturalist 35, 460483.CrossRefGoogle Scholar
Luque, J.L., Martins, A.A. & Tavares, L.E.R. (2005) Community structure of metazoan parasites of the yellow Cururu toad Bufo ictericus (Anura, Bufonidae) from Rio de Janeiro, Brasil. Acta Parasitologica 50, 215220.Google Scholar
Magurran, A.E. (2004) Measuring biological diversity. 256 pp. Oxford, Blackwell Publishing Company.Google Scholar
Marcogliese, D.J. (2001) Pursuing parasites up the food chain: implications of food web structure and function on parasite communities in aquatic systems. Acta Parasitologica 46, 8293.Google Scholar
Marcogliese, D.J. (2005) Parasite of the superorganism: are they indicators of ecosystem health? International Journal of Parasitology 35, 705716.CrossRefGoogle ScholarPubMed
Marcogliese, D.J. & Cone, D.K. (1997) Food webs: a plea for parasites. Trends in Ecology and Evolution 12, 320325.CrossRefGoogle ScholarPubMed
Marcogliese, D.J., King, K.C., Salo, H.M., Fournier, M., Brousseau, P., Spear, P., Champoux, L., McLaughlin, J.D. & Boily, M. (2009) Combined effects of agricultural activity and parasites on biomarkers in the bullfrog, Rana catesbeiana. Aquatic Toxicology 9, 126134.CrossRefGoogle Scholar
McAlpine, D.F. (1997) Helminth communities in bullfrogs (Rana catesbeiana), green frogs (Rana clamitans), and leopard frogs (Rana pipiens) from New Brunswick, Canada. Canadian Journal of Zoology 75, 18831890.CrossRefGoogle Scholar
McKenzie, V.J. (2007) Human land use and patterns of parasitism in tropical amphibian hosts. Biological Conservation 137, 102116.CrossRefGoogle Scholar
Muzzall, P.M. (1991) Helminth infracommunities of the frogs Rana catesbeiana and Rana clamitans from Turkey Marsh, Michigan. Journal of Parasitology 77, 366371.CrossRefGoogle ScholarPubMed
Muzzall, P.M., Gillillant, M.G., Summer, C.S. & Mehne, C.J. (2001) Helminth communities of green frogs Rana clamitans Latreille, from southwestern Michigan. Journal of Parasitology 87, 962968.CrossRefGoogle ScholarPubMed
Ostrowski de Núñez, M. (1974) Sobre el ciclo biológico de Episthmium suspensum (Braun 1901) Travassos 1922. Revista del Museo Argentino Ciencias Naturales Bernardino Rivadavia 1, 153164.Google Scholar
Ostrowski de Núñez, M. (1979a) Fauna de agua dulce de la república Argentina. IX. Sobre representantes de la fauna Paramphistomatidae (Trematoda). Physis 38, 5562.Google Scholar
Ostrowski de Núñez, M. (1979b) Ungewohnliche Xiphidiocercarie aus Ampullaria canaliculata nebst Bemerkungen ubre Travtrema stenocotyle. Angewandte Parasitology 20, 4652.Google Scholar
Ostrowski de Núñez, M., Hamann, M.I. & Rumi, A. (1991) Population dynamics of planorbid snail from a lenitic biotope in northeastern Argentina. Larval trematodes of Biomphalaria occidentalis and analysis of their prevalence and seasonality. Acta Parasitologica Polonica 36, 159166.Google Scholar
Pearson, J.C. (1960) The life cycle of Neodiplostomum buteonis and the occurrence of a periprostate (Trematoda: Diplostomidae). Journal of Parasitology 46, 48.CrossRefGoogle Scholar
Poulin, R. (1998a) Large-scale patterns of host use by parasites of freshwater fishes. Ecology Letters 1, 118128.CrossRefGoogle Scholar
Poulin, R. (1998b) Evolutionary ecology of parasites. From individuals to communities. 212 pp. London, Chapman & Hall.Google Scholar
Poulin, R. (1999) The intra- and interspecific relationships between abundance and distribution in helminth parasites of birds. Journal of Animal Ecology 68, 719725.CrossRefGoogle Scholar
Poulin, R. & Morand, S. (2004) Parasite biodiversity. 216 pp. Washington, Smithsonian Institution.Google Scholar
Schaefer, E.F. (2007) Restricciones cuantitativas asociadas con los modos reproductivos de los anfibios en áreas de impacto por la actividad arrocera en la Provincia de Corrientes. Unpublished PhD thesis, Universidad Nacional de La Plata, Argentina.Google Scholar
Schaefer, E.F., Hamann, M.I., Kehr, A.I., González, C.E. & Duré, M.I. (2006) Ecological aspects about Leptodactylus chaquensis (Anura: Leptodactylidae) in a subtropical area: trophic, reproductive and parasite features. Herpetological Journal 16, 387394.Google Scholar
Smyth, J.P. & Smyth, M.M. (1980) Frogs as host–parasite systems I. An introduction to parasitology through the parasites of Rana temporaria, R. esculenta and R. pipiens. 112 pp. London, Macmillan Press.Google Scholar
Stock, T.M. & Holmes, J.C. (1987) Host specificity and exchange of intestinal helminths among four species of grebes (Podicipedidae). Canadian Journal of Zoology 65, 669676.CrossRefGoogle Scholar
Tomas, G. & Clay, D. (2008) Bio-DAP. Ecological diversity and its measurement. Available athttp://nhsbig.inhs.uiuc.edu/populations/bio-dap.zip (accessed accessed 11 January 2011).Google Scholar
Yamaguti, S. (1971) Synopsis of digenetic trematodes of vertebrates. Vol. II. 856 pp. Tokyo, Keigaku Publishing Company.Google Scholar
Yamaguti, S. (1975) A synoptical review of life histories of digenetic trematodes of vertebrates. 590 pp. Tokyo, Keigaku Publishing Company.Google Scholar
Yoder, H.R. & Coggins, J.R. (2007) Helminth communities in five species of sympatric amphibians from three adjacent ephemeral ponds in southeastern Wisconsin. Journal of Parasitology 93, 755760.CrossRefGoogle ScholarPubMed
Zar, J.H. (2010) Biostatistical analysis. 5th edn.662 pp. Englewood Cliffs, New Jersey, Prentice-Hall.Google Scholar