Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T15:30:45.992Z Has data issue: false hasContentIssue false

Characterization of complete mitochondrial genome and ribosomal operon for Carassotrema koreanum Park, 1938 (Digenea: Haploporidae) by means of next-generation sequencing data

Published online by Cambridge University Press:  27 July 2022

Y.I. Ivashko
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the RAS, Vladivostok, Russia
A.A. Semenchenko
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the RAS, Vladivostok, Russia
D.A. Solodovnik
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the RAS, Vladivostok, Russia
D.M. Atopkin*
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the RAS, Vladivostok, Russia Department of Cell Biology and Genetics, Far Eastern Federal University, Vladivostok, Russia
*
Author for correspondence: D.M. Atopkin, E-mail: atop82@gmail.com

Abstract

We obtained new data on the complete mitochondrial DNA (mtDNA) and the ribosomal operon of the trematode Carassotrema koreanum (Digenea: Haploporata: Haploporidae), an intestinal parasite of Carassius auratus, using next-generation sequencing. The mtDNA of C. koreanum contained 13,965 bp, including 12 protein-coding genes, two ribosomal genes, 22 transport RNA (tRNA) genes and a non-coding region. The ribosomal operon of C. koreanum was 10,644 bp in length, including ETS1 (1449 bp), 18S ribosomal RNA (rRNA) gene (1988 bp), ITS1 ribosomal DNA (rDNA) (558 bp), 5.8S rRNA gene (157 bp), ITS2 rDNA (274 bp), 28S rRNA gene (4152 bp) and ETS2 (2066 bp). Phylogenetic analysis based on mtDNA protein-coding regions showed that C. koreanum was closely related to Parasaccocoelium mugili, a species from the same suborder Haploporata. Bayesian phylogenetic tree topology was the most reliable and confirmed the validity of the Haploporata. The results of sequence cluster analysis based on codon usage bias demonstrated some agreement with the results of the phylogenetic analysis. In particular, Schistosoma spp. were differentiated from the other members of Digenea and the members of Pronocephalata were localized within the same cluster. Carassotrema koreanum and P. mugili fell within different clusters. The grouping of C. koreanum and P. mugili within the same cluster was obtained on the basis of frequencies of 13 specified codons, of which three codon pairs were degenerate. A similarity was found between two haploporid species and two Dicrocoelium spp. in the presence of TTG start codon of the mitochondrial nad5 gene. Our results confirmed the taxonomical status of the Haploporata identified in the previous studies and revealed some characteristic features of the codon usage in its representatives.

Type
Research Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anisimova, M and Gascuel, O (2006) Approximate likelihood-ratio test for branches: a fast, accurate and powerful alternative. Systematic Biology 55, 539552.CrossRefGoogle ScholarPubMed
Atopkin, DM, Besprozvannykh, VV, Ha, DN, Nguyen, VH, Nguyen, VT and Chalenko, KP (2018) A new subfamily, Pseudohaploporinae subfam. n. (Digenea: Haploporidae), with morphometric and molecular analyses of two new species: Pseudohaploporus vietnamensis n. g., sp. n. and Pseudohaploporus planilizum n. g., sp. n. from Vietnamese mullet. Parasitology International 69, 1724.CrossRefGoogle Scholar
Atopkin, DM, Besprozvannykh, VV, Ha, DN, Nguyen, VH, Khamatova, AY and Vainutis, KS (2019) Morphometric and molecular analyses of Carassotrema koreanum Park 1938 and Elonginurus mugilus Lu, 1995 (Digenea: Haploporidae) Srivastava, 1937 from the Russian Far East and Vietnam. Parasitology Research 118, 21292137.CrossRefGoogle ScholarPubMed
Atopkin, DM, Besprozvannykh, VV, Ha, DN, Nguyen, VH and Nguyen, VT (2020) New species and new genus of Pseudohaploporinae (Digenea): Pseudohaploporus pusitestis sp. n. and Parahaploporus elegantus n. g., sp. n. (Digenea: Pseudohaploporinae) from Vietnamese mullet fish. Parasitology International 75, 102023.CrossRefGoogle Scholar
Atopkin, DM, Semenchenko, AA, Solodovnik, DA, Ivashko, YI and Vinnikov, KA (2021) First next-generation sequencing data for Haploporidae (Digenea: Haploporata): characterization of complete mitochondrial genome and ribosomal operon for Parasaccocoelium mugili Zhukov, 1971. Parasitology Research 120, 20372046.CrossRefGoogle ScholarPubMed
Besprozvannykh, VV, Atopkin, DM, Ngo, HD, Ha, NV, Tang, NV and Beloded, AY (2018) Morphometric and molecular analyses of two digenean species from the mullet: Skrjabinolecithum spinosum n. sp. from the Russian southern Far East and Unisaccus tonkini n. sp. from Vietnam. Journal of Helminthology 92, 713724.CrossRefGoogle Scholar
Biswal, DK, Chatterjee, A, Bhattacharya, A and Tandon, V (2014) The mitochondrial genome of Paragonimus westermani (Kerbert, 1878), the Indian isolate of the lung fluke representative of the family Paragonimidae (Trematoda). PeerJ 2, e484.CrossRefGoogle Scholar
Blasco-Costa, I, Balbuena, JA, Kostadinova, A and Olson, PD (2009) Interrelationships of the Haploporinae (Digenea: Haploporidae): a molecular test of the taxonomicframework based on morphology. Parasitology International 58, 265269.CrossRefGoogle ScholarPubMed
Briscoe, AG, Bray, RA, Brabec, J and Littlewood, DT (2016) The mitochondrial genome and ribosomal operon of Brachycladium goliath (Digenea: Brachycladiidae) recovered from a stranded minke whale. Parasitology International 65, 271275.CrossRefGoogle ScholarPubMed
Chang, Q-C, Liu, G-H, Gao, J-F, et al. (2016) Sequencing and characterization of the complete mitochondrial genome from the pancreatic fluke Eurytrema pancreaticum (Trematoda, Dicroroeliidae). Gene 576, 160165.CrossRefGoogle Scholar
Fu, Y-T, Jin, Y-C, Li, F and Liu, G-H (2019a) Characterization of the complete mitochondrial genome of the echinostome Echinostoma miyagawai and phylogenetic implications. Parasitology Research 118, 30913097.CrossRefGoogle Scholar
Fu, Y-T, Jin, Y-C and Liu, G-H (2019b) The complete mitochondrial genome of the caecal fluke of Poultry, Postharmostomum commutatum, as the first representative from the superfamily Brachylaimoidea. Frontiers in Genetics 10, 1037.CrossRefGoogle Scholar
Guindon, S and Gascuel, O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.CrossRefGoogle ScholarPubMed
Guo, RX, Li, Y, Gao, Y, Qiu, YY, Jin, ZH, Gao, ZY, Zhang, XG, An, Q, Chang, QC, Gao, JF and Wang, CR (2022) The complete mitochondrial genome of Prosthogonimus cuneatus and Prosthogonimus pellucidus (Trematoda: Prosthogonimidae), their features and phylogenetic relationships in the superfamily Microphalloidea. Acta Tropica 232, 106469.CrossRefGoogle Scholar
Huelsenbeck, JP, Ronquist, F, Nielsen, R and Bollback, JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 23102314.CrossRefGoogle ScholarPubMed
Jones, BP, Norman, BF, Borrett, HE, Attwood, SW, Mondal, MMH, Walker, AJ, Webster, JP, Rajapakse, RPVJ and Lawton, SP (2020) Divergence across mitochondrial genomes of sympatric members of the Schistosoma indicum group and clues into the evolution of Schistosoma spindale. Scientific Reports 10, 2480.CrossRefGoogle ScholarPubMed
Kumar, S, Stecher, G, Li, M, Knyaz, C and Tamura, K (2018) MEGA x: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 15471549.CrossRefGoogle ScholarPubMed
Lamolle, G, Fontenla, S, Rijo, G, Tort, JF and Smircich, P (2019) Compositional analysis of flatworm genomes shows strong codon usage biases across all classes. Frontiers in Genetics 10, 771.CrossRefGoogle ScholarPubMed
Le, TH, Blair, D, Agatsuma, T, Humair, PF, Campbell, NJ, Iwagami, M, Littlewood, DT, Peacock, B, Johnston, DA, Bartley, J, Rollinson, D, Herniou, EA, Zarlenga, DS and Mcmanus, DP (2000) Phylogenies inferred from mitochondrial gene orders - a cautionary tale from the parasitic flatworms. Molecular Biology and Evolution 17, 11231125.CrossRefGoogle Scholar
Le, TH, Nguyen, NTB, Nguyen, KT, Doan, HTT, Dung, DT and Blair, D (2016) A complete mitochondrial genome from Echinochasmus japonicus supports the elevation of Echinochasminae Odhner, 1910 to family rank (Trematoda: Platyhelminthes). Infections, Genetic and Evolution 45, 369377.CrossRefGoogle Scholar
Le, TH, Nguyen, KT, Nguyen, NTB, Doan, HTT, Agatsuma, T and Blair, D (2019) The complete mitochondrial genome of Paragonimus ohirai (Paragonimidae: Trematoda: Platyhelminthes) and its comparison with P. westermani congeners and other trematodes. PeerJ 7, e7031.CrossRefGoogle Scholar
Lee, S and Gascuel, O (2008) An improved general amino-acid replacement matrix. Molecular Biology and Evolution 25, 13071320.CrossRefGoogle Scholar
Lee, D, Choe, S, Park, H, et al. (2013) Complete mitochondrial genome of Haplorchis taichui and comparative analysis with other trematodes. Korean Journal of Parasitology 51, 719726.CrossRefGoogle ScholarPubMed
Li, Y, Ma, XX, Lv, QB, Hu, Y, Qiu, HY, Chang, QC and Wang, CR (2019) Characterization of the complete mitochondrial genome sequence of Tracheophilus cymbius (Digenea), the first representative from the family Cyclocoeliidae. Journal of Helminthology 94, 17.Google Scholar
Littlewood, DTJ, Lockyer, AE, Webster, BL, Johnston, DA and Le, TH (2006) The complete mitochondrial genomes of Shistosoma haematobium and Shistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Molecular Phylogenetics and Evolution 39, 452467.CrossRefGoogle Scholar
Liu, G-H, Yan, H-B, Otranto, D, Wang, X-Y, Zhao, G-H, Jia, W-Z and Zhu, X-Q (2014a) Dicrocoelium chiensis and Dicrocoelium dendriticum (Trematoda: Digenea) are distinct lancet fluke species based on mitochondrial and nuclear ribosomal DNA sequences. Molecular Phylogenetics and Evolution 97, 325331.CrossRefGoogle Scholar
Liu, G-H, Gasser, RB, Young, ND, Song, H-Q, Ai, L and Zhu, X-Q (2014b) Complete mitochondrial genomes of the ‘intermediate form’ of Fasciola and Fasciola gigantica, and their comparison with F. hepatica. Parasites and Vectors 7, 150.CrossRefGoogle Scholar
Liu, Z-X, Zhang, Y, Liu, Y-T, Chang, Q-C, Su, X, Fu, X, Yue, D-M, Gao, Y and Wang, C-R (2016) Complete mitochondrial genome of Echinostoma hortense (Digenea: Echinostomatidae). Korean Journal of Parasitology 54, 173179.CrossRefGoogle Scholar
Locke, SA, Dam, AV, Caffara, M, Pinto, HA, López-Hernández, D and Blanar, CA (2018) Validity of the Diplostomoidea and Diplostomida (Digenea, Platyhelminthes) upheld in phylogenomic analysis. International Journal for Parasitology 48, 10431059.CrossRefGoogle ScholarPubMed
Ma, J, He, J-J, Zhou, C-Y, Sun, M-M, Cevallos, W, Sugiyama, H, Zhu, X-Q and Calvopina, M (2019) Characterization of the mitochondrial genome sequences of the liver fluke Amphimerus sp. (Trematoda: Opisthorchiidae) from Ecuador and phylogenetic implications. Acta Tropica 195, 9096.CrossRefGoogle ScholarPubMed
Na, L, Gao, J-F, Liu, G-H, Fu, X, Su, X, Yue, D-M, Gao, Y, Zhang, Y and Wang, C-R (2016) The complete mitochondrial genome of Metorchis orientalis (Trematoda: Opisthorchiidae): comparison with other closely related species and phylogenetic implications. Infection, Genetics and Evolution 39, 4550.CrossRefGoogle ScholarPubMed
Nurk, S, Bankevich, A, Antipov, D, Gurevich, A, Korobeynikov, A, Lapidus, A, Prjibelsky, A, Pyshkin, A, Sirotkin, A, Sirotkin, Y, Stepanauskas, R, McLean, J, Lasken, R, Clingenpeel, S, Woyke, T, Tesler, G, Alekseyev, M, Pevzner, P (2013) Assembling genomes and mini-metagenomes from highly chimeric reads. Lecture Notes in Computer Science 7821, 158170.CrossRefGoogle Scholar
Oey, H, Zakrzewski, M, Gravermann, K, et al. (2019) Whole-genome sequence of the bovine blood fluke Shistosoma bovis supports interspecific hybridization with S. haematobium. PLoS Pathogens 15, e1007513.CrossRefGoogle Scholar
Olson, PD, Cribb, TH, Tkach, VV, Bray, RA and Littlewood, DTJ (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology 33, 733755.CrossRefGoogle Scholar
Overstreet, R and Curran, S (2005) Family Haploporidae Nicoll, 1914. pp. 129–165 in Gibson DI, Jones A and Bray RA (Eds) Keys to the Trematoda, vol. 2. Wallingford, CAB International.Google Scholar
Park, J-K, Kin, K-H, Kang, S, Jeon, HK, Kin, J-H and Littlewood, DTJ (2007) Characterization of the mitochondrial genome of Diphyllobothrium latum (Cestoda: Pseudophyllidea) – implications for the phylogeny of eucestodes. Parasitology 134, 749759.CrossRefGoogle ScholarPubMed
Pérez-Ponce de León, G and Hernández-Mena, DI (2019) Testing the higher-level phylogenetic classification of Digenea (Platyhelminthes, Trematoda) based on nuclear rDNA sequences before entering the age of the ‘next-generation’ tree of life. Journal of Helminthology 93, 260276.CrossRefGoogle ScholarPubMed
Qian, L, Zhou, P, Li, W, Wang, H, Miao, T and Hu, L (2018) Characterization of the complete mitochondrial genome of the lung fluke, Paragonimus heterotremus. Mitochondrial DNA Part B 3, 560561.CrossRefGoogle ScholarPubMed
Ran, R, Zhao, Q, Abuzeid, AM, et al. (2020) Mitochondrial Genome Sequence of Echinostoma revolutum from Red-Crowned Crane (Grus japonensis). The Korean Journal of Parasitology 58, 7379.CrossRefGoogle Scholar
Semyenova, S, Chrisanfova, G, Mozharovskaya, L, Guliaev, A and Ryskov, A (2017) The complete mitochondrial genome of the causative agent of the human cercarial dermatitis, the visceral bird shistosome species Trichobilharzia szidati (Platyhelminthes: Trematoda: Shistosomatidae). Mitochondrial DNA Part B 2, 469470.CrossRefGoogle Scholar
Shameen, U and Madhavi, R (1991) Observations on the life-cycles of two haploporid trematodes, Carassotrema bengalense Rekharani and Madhavi, 1985 and Saccocoelioides martini Madhavi. Systematic Parasitology 20, 97107.CrossRefGoogle Scholar
Shao, R, Dowton, M, Murrel, A and Barker, SC (2003) Rates of gene rearrangements and nucleotide substitution are correlated in the mitochondrial genomes of insects. Molecular Biology and Evolution 20, 16121619.CrossRefGoogle ScholarPubMed
Shekhovtsov, SV, Katochin, AV, Kolchanov, NA and Mordvinov, VA (2010) The complete mitochondrial genomes of the liver flukes Opisthorchis felineus and Clonorchis sinensis (Trematoda). Parasitology International 59, 100103.CrossRefGoogle Scholar
Suleman, S, Ma, J, Khan, MS, Tkach, VV, Muhammad, N, Zhang, D and Zhu, X-Q (2019a) Characterization of the complete mitochondrial genome of Plagiorchis maculosus (Digenea, Plagiorchiidae), representative of a taxonomically complex digenean family. Parasitology International 71, 99105.CrossRefGoogle Scholar
Suleman, S, Khan, MS, Heneberg, P, Zhou, CY, Muhammad, N, Zhu, X-Q and Ma, J (2019b) Characterization of the complete mitochondrial genome of Uvitellina sp., representative of the family Cyclocoeliidae and phylogenetic implications. Parasitology Research 118, 22032211.CrossRefGoogle Scholar
Suleman, S, Muhammad, N, Khan, MS, Tkach, VV, Ullah, H, Ehsan, M, Ma, J and Zhu, XQ (2021) Mitochondrial genomes of two eucotylids as the first representatives from the superfamily Microphalloidea (Trematoda) and phylogenetic implications. Parasites and Vectors 14, 48.CrossRefGoogle ScholarPubMed
TIBCO Software Inc. (2017) Statistica (program product for data analysis), version 13. Available at http://tibco.com.Google Scholar
Wang, Y, Wang, CR, Zhao, GH, Gao, JF, Li, MW and Zhu, XQ (2011) The complete mitochondrial genome of Orientobilharzia turkestanicum supports its affinity with African Schistosoma spp. Infection, Genetics and Evolution 11, 19641970.CrossRefGoogle ScholarPubMed
Wang, T, Wang, Y, Xu, F, Li, X, Qu, R, Song, L, Tang, Y and Lin, P (2018) Characterization of the complete mitochondrial genome of the lung fluke, Paragonimus kellicotti. Mitochondrial DNA Part B 3, 715716.CrossRefGoogle ScholarPubMed
Webster, BL, Rudilfová, J, Horák, P and Littlewood, DTJ (2007) The complete mitochondrial genome of the bird schistosome Trichobilharzia regent (Platyhelminthes: Digenea), causative agent of cercarial dermatitis. Journal of Parasitology 93, 553561.CrossRefGoogle Scholar
Wu, Y-A, Gao, J-W, Cheng, X-F, Xie, M, Yuan, X-P, Liu, D and Song, R (2020) Characterization and comparative analysis of the complete mitochondrial genome of Azygia hwangtsiyui Tsin, 1933 (Digenea), the first for a member of the family Azygiidae. ZooKeys 945, 116.CrossRefGoogle Scholar
Xu, G, Zhu, P, Zhu, W, Ma, B, Li, X and Li, W (2021) Characterization of the complete mitochondrial genome of Notocotylus sp. (Trematoda, Notocotylidae) and its phylogenetic implications. Parasitology Research 120, 12911301.CrossRefGoogle ScholarPubMed
Yang, X, Gasser, RB, Koehler, AV, Wang, L, Zhu, K, Chen, L, Feng, H, Hu, M and Fang, R (2015) Mitochondrial genome of Hypoderaeum conoideum – comparison with selected trematodes. Parasites and Vectors 8, 97.CrossRefGoogle ScholarPubMed
Yang, X, Wang, L, Chen, H, Feng, H, Shen, B, Hu, M and Fang, R (2016) The complete mitochondrial genome of Gastrothylax crumenifer (Gastrothylacidae, Trematoda) and comparative analyses with selected trematodes. Parasitology Research 115, 24892497.CrossRefGoogle ScholarPubMed
Yan, H-B, Wang, X-Y, Lou, Z-Z, et al. (2013) The mitochondrial genome of Paramphistomum cervi (Digenea), the first representative for the family Paramphistomatidae. PLoS One 8, e71300.CrossRefGoogle Scholar