Hostname: page-component-6bf8c574d5-7jkgd Total loading time: 0 Render date: 2025-02-22T18:54:37.192Z Has data issue: false hasContentIssue false

Characterization of the complete mitochondrial genomes of Corynosoma bullosum (von Linstow, 1892) and C. evae Zdzitowiecki, 1984 (Acanthocephala: Polymorphida), and the phylogenetic implications

Published online by Cambridge University Press:  10 February 2025

Y.-Y. Xie
Affiliation:
Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, Hebei Province, P. R. China Hebei Collaborative Innovation Center for Eco‐Environment; 050024 Shijiazhuang, Hebei Province, P. R. China
H.-X. Chen
Affiliation:
Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, Hebei Province, P. R. China Hebei Collaborative Innovation Center for Eco‐Environment; 050024 Shijiazhuang, Hebei Province, P. R. China
T. A. Kuzmina
Affiliation:
I. I. Schmalhausen Institute of Zoology National Academy of Sciences of Ukraine, 15, Bogdan Khmelnytsky Street, Kyiv, 01030, Ukraine Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, Kosice, 04001, Slovakia
O. Lisitsyna
Affiliation:
I. I. Schmalhausen Institute of Zoology National Academy of Sciences of Ukraine, 15, Bogdan Khmelnytsky Street, Kyiv, 01030, Ukraine
L. Li*
Affiliation:
Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, Hebei Province, P. R. China Hebei Collaborative Innovation Center for Eco‐Environment; 050024 Shijiazhuang, Hebei Province, P. R. China
*
Corresponding author: L. Li; Email: liangliangex369@126.com

Abstract

Species of the genus Corynosoma (Acanthocephala: Polymorphida) mainly parasitize marine mammals and rarely marine birds, and are of veterinary and medical importance due to causing corynosomiasis in wildlife and humans. However, the current knowledge of the mitochondrial genomes and mitogenomic phylogeny of this group remains very insufficient. In the present study, the complete mitochondrial genomes of C. bullosum (von Linstow, 1892) and C. evae Zdzitowiecki, 1984 were sequenced and annotated for the first time. Both mitogenomes comprise 12 protein-coding genes (missing atp8), 22 tRNA genes, and 2 ribosomal RNAs (rrnS and rrnL), plus 2 non-coding regions (NCR1 and NCR2). Corynosoma bullosum has the largest mitogenome (14,879 bp) of any polymorphid species reported so far, while C. evae has the smallest (13,947 bp), except for Sphaerirostris lanceoides (Petrochenko, 1949). Comparative mitogenomic analysis also revealed the presence of distinct discrepancies in A + T content and gene rearrangement across the families Polymorphidae, Centrorhynchidae, and Plagiorhynchidae. Moreover, phylogenetic analyses based on the concatenated amino acid sequences of 12 protein-coding genes strongly supported the monophyly of the order Polymorphida and a close affinity between the families Polymorphidae and Centrorhynchidae in Polymorphida. The present mitogenomic phylogeny provides additional evidence for a sister relationship between the genera Corynosoma and Bolbosoma and demonstrated that C. evae has a closer relationship with C. villosum than C. bullosum in the genus Corynosoma.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amin, OM (2013) Classification of the Acanthocephala. Folia Parasitologica 60, 273305.CrossRefGoogle ScholarPubMed
Aznar, FJ, de León, GP and Raga, JA (2006) Status of Corynosoma (Acanthocephala: Polymorphidae). based on anatomical, ecological, and phylogenetic evidence, with the erection of Pseudocorynosoma n. gen. Journal of Parasitology 92, 548564.CrossRefGoogle Scholar
Bernt, M, Merkle, D, Ramsch, K, Fritzsch, G, Perseke, M, Bernhard, D, Schlegel, M, Stadler, PF and Middendorf, M (2007) CREx: Inferring genomic rearrangements based on common intervals. Bioinformatics (Oxford, England) 23, 29572958.Google ScholarPubMed
Cock, PJ, Antao, T, Chang, JT, Chapman, BA, Cox, CJ, Dalke, A, Friedberg, I, Hamelryck, T, Kauff, F, Wilczynski, B and de Hoon, MJ (2009) Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics (Oxford, England) 25, 14221423.Google ScholarPubMed
Dai, GD, Yan, HB, Li, L, Zhang, LS, Liu, ZL, Gao, SZ, Ohiolei, JA, Wu, YD, Guo, AM, Fu, BQ and Jia, WZ (2022) Molecular characterization of a new Moniliformis sp. from a plateau zokor (Eospalax fontanierii baileyi) in China. Frontiers in Microbiology 13, e806882.CrossRefGoogle ScholarPubMed
Fujita, T, Waga, E, Kitaoka, K, Imagawa, T, Komatsu, Y, Takanashi, K, Anbo, F, Anbo, T, Katuki, S, Ichihara, S, Fujimori, S, Yamasaki, H, Morishima, Y, Sugiyama, H and Katahira, H (2016) Human infection by acanthocephalan parasites belonging to the genus Corynosoma found from small bowel endoscopy. Parasitology International 65, 491493.CrossRefGoogle Scholar
Gao, JW, Yuan, XP, Jakovlic, I, Wu, H, Xiang, CY, Xie, M, Song, R, Xie, ZG, Wu, YA and Ou, DS (2023) The mitochondrial genome of Heterosentis pseudobagri (Wang & Zhang, 1987) Pichelin & Cribb, 1999 reveals novel aspects of tRNA genes evolution in Acanthocephala. BMC Genomics 24, 95.CrossRefGoogle ScholarPubMed
Gao, JW, Yuan, XP, Wu, H, Xiang, CY, Xie, M, Song, R, Chen, ZY, Wu, YA and Ou, DS (2022) Mitochondrial phylogenomics of Acanthocephala: Nucleotide alignments produce long-branch attraction artefacts. Parasite Vectors 15, 376.CrossRefGoogle ScholarPubMed
García-Gallego, A, Raga, JA, Fraija-Fernández, N and Aznar, FJ (2023) Temporal and geographical changes in the intestinal helminth fauna of striped dolphins, Stenella coeruleoalba, in the western Mediterranean: a long-term analysis (1982-2016). Frontiers in Marine Science 10, 117.CrossRefGoogle Scholar
García-Varela, M, de León, GP, Aznar, FJ and Nadler, SA (2011) Erection of Ibirhynchus gen. nov. (Acanthocephala: Polymorphidae), based on molecular and morphological data. Journal of Parasitology 97, 97105.CrossRefGoogle ScholarPubMed
García-Varela, M, Pérez-Ponce De León, G, Aznar, FJ and Nadler, SA (2013) Phylogenetic relationship among genera of Polymorphidae (Acanthocephala), inferred from nuclear and mitochondrial gene sequences. Molecular Phylogenetics and Evolution 68, 176184.CrossRefGoogle ScholarPubMed
Gazi, M, Kim, J, Park, C, Littlewood, D and Park, JK (2016) Mitogenomic phylogeny of Acanthocephala reveals novel class relationships. Zoologica Scripta 45, 437454.CrossRefGoogle Scholar
Gazi, M, Kim, J and Park, JK (2015) The complete mitochondrial genome sequence of Southwellina hispida supports monophyly of Palaeacanthocephala (Acanthocephala: Polymorphida). Parasitology International 64, 6468.CrossRefGoogle ScholarPubMed
Gazi, M, Sultana, T, Min, GS, Park, YC, García-Varela, M, Nadler, SA and Park, JK (2012) The complete mitochondrial genome sequence of Oncicola luehei (Acanthocephala: Archiacanthocephala) and its phylogenetic position within Syndermata. Parasitology International 61, 307316.CrossRefGoogle ScholarPubMed
Golombek, A, Tobergte, S and Struck, TH (2015) Elucidating the phylogenetic position of Gnathostomulida and first mitochondrial genomes of Gnathostomulida, Gastrotricha and Polycladida (Platyhelminthes). Molecular Phylogenetics and Evolution 86, 4963.CrossRefGoogle ScholarPubMed
Gruber, AR, Bernhart, SH and Lorenz, R (2015) The ViennaRNA web services. Methods in Molecular Biology 1269, 307326.CrossRefGoogle ScholarPubMed
Hernández-Orts, JS, Brandão, M, Georgieva, S, Raga, JA, Crespo, EA, Luque, JL and Aznar, FJ (2017) From mammals back to birds: Host-switch of the acanthocephalan Corynosoma australe from pinnipeds to the Magellanic penguin Spheniscus magellanicus. PLoS One 12(10), e0183809.CrossRefGoogle Scholar
Jin, JJ, Yu, WB, Yang, JB, Song, Y, dePamphilis, CW, Yi, TS and Li, DZ (2020) GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21, 241.CrossRefGoogle ScholarPubMed
Kalyaanamoorthy, S, Minh, BQ, Wong, TKF, Von Haeseler, A and Jermiin, LS (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587589.CrossRefGoogle ScholarPubMed
Katoh, K and Standley, DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30, 772780.CrossRefGoogle ScholarPubMed
Kennedy, CR (2006) Ecology of the Acanthocephala. New York: Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Laskowski, Z and Zdzitowiecki, K (2017) Acanthocephalans in sub-Antarctic and Antarctic. In Klimpel, S, Kuhn, T, Mehlhorn, H (eds), Biodiversity and Evolution of Parasitic Life in the Southern Ocean, vol. 9. Parasitology Research Monographs. Cham: Sprinter, 141182.CrossRefGoogle Scholar
Letunic, I and Bork, P (2021) Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49, 293296.CrossRefGoogle ScholarPubMed
Li, DX, Yang, RJ, Chen, HX, Kuzmina, TA, Spraker, TR and Li, L (2024) Characterization of the complete mitochondrial genomes of the zoonotic parasites Bolbosoma nipponicum and Corynosoma villosum (Acanthocephala: Polymorphida) and the molecular phylogeny of the order Polymorphida. Parasitology 151, 4557.CrossRefGoogle ScholarPubMed
Mathison, BA, Mehta, N and Couturier, MR (2021) Human acanthocephaliasis: A thorn in the side of parasite diagnostics. Journal of Clinical Microbiology 59, e0269120.CrossRefGoogle ScholarPubMed
Mauer, K, Hellmann, SL, Groth, M, Frobius, AC, Zischler, H, Hankeln, T and Herlyn, H (2020) The genome, transcriptome, and proteome of the fish parasite Pomphorhynchus laevis (Acanthocephala). PLoS ONE 15, e0232973.CrossRefGoogle ScholarPubMed
Meng, G, Li, Y, Yang, C and Liu, S (2019) MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research 47, e63.CrossRefGoogle ScholarPubMed
Min, GS and Park, JK (2009) Eurotatorian paraphyly: Revisiting phylogenetic relationships based on the complete mitochondrial genome sequence of Rotaria rotatoria (Bdelloidea: Rotifera: Syndermata). BMC Genomics 10, 533.CrossRefGoogle ScholarPubMed
Minh, BQ, Schmidt, HA, Chernomor, O, Schrempf, D, Woodhams, MD, Von Haeseler, A and Lanfear, R (2020) IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 15301534.CrossRefGoogle ScholarPubMed
Muhammad, N, Li, DX, Ru, SS, Suleman, , Saood, D, Alvi, MA and Li, L (2023) Characterization of the complete mitochondrial genome of Acanthogyrus (Acanthosentis) bilaspurensis Chowhan, Gupta & Khera, 1987 (Eoacanthocephala: Quadrigyridae), the smallest mitochondrial genome in Acanthocephala, and its phylogenetic implications. Journal of Helminthology 97, e87.CrossRefGoogle ScholarPubMed
Muhammad, N, Li, L, Suleman, , Zhao, Q, Bannai, MA, Mohammad, ET, Khan, MS, Zhu, XQ and Ma, J (2020a) Characterization of the complete mitochondrial genome of Cavisoma magnum (Acanthocephala: Palaeacanthocephala), first representative of the family Cavisomidae, and its phylogenetic implications. Infection, Genetics and Evolution 80, 104173.CrossRefGoogle ScholarPubMed
Muhammad, N, Suleman, , Ahmad, MS, Li, L, Zhao, Q, Ullah, H, Zhu, XQ and Ma, J (2020b) Mitochondrial DNA dataset suggest that the genus Sphaerirostris Golvan, 1956 is a synonym of the genus Centrorhynchus Lühe, 1911. Parasitology 147, 11491157.CrossRefGoogle ScholarPubMed
Muhammad, N, Suleman, , Khan, MS, Li, L, Zhao, Q, Ullah, H, Zhu, XQ and Ma, J (2020c) Characterization of the complete mitogenome of Centrorhynchus clitorideus (Meyer, 1931) (Palaeacanthocephala: Centrorhynchidae), the largest mitochondrial genome in Acanthocephala, and its phylogenetic implications. Molecular and Biochemical Parasitology 237, 111274.CrossRefGoogle ScholarPubMed
Muhammad, N, Suleman, , Ma, J, Khan, MS, Li, L, Zhao, Q, Ahmad, MS and Zhu, XQ (2019a) Characterization of the complete mitochondrial genome of Sphaerirostris picae (Rudolphi, 1819) (Acanthocephala: Centrorhynchidae), representative of the genus Sphaerirostris. Parasitology Research 118, 22132221.CrossRefGoogle ScholarPubMed
Muhammad, N, Suleman, , Ma, J, Khan, MS, Wu, SS, Zhu, Q and Li, L (2019b) Characterization of the complete mitochondrial genome of Centrorhynchus milvus (Acanthocephala: Polymorphida) and its phylogenetic implications. Infection, Genetics and Evolution 75, 103946.CrossRefGoogle ScholarPubMed
Nickol, BB (1985) Epizootiology. In Crompton, DWT and Nickol, BB (eds), Biology of the Acanthocephala. Cambridge: Cambridge University Press, 307346.Google Scholar
Pan, TS and Jiang, H (2018) The complete mitochondrial genome of Hebesoma violentum (Acanthocephala). Mitochondrial DNA Part B 3, 582583.CrossRefGoogle ScholarPubMed
Pan, TS and Nie, P (2013) The complete mitochondrial genome of Pallisentis celatus (Acanthocephala) with phylogenetic analysis of acanthocephalans and rotifers. Folia Parasitologica 60, 181191.CrossRefGoogle ScholarPubMed
Perrot-Minnot, MJ, Cozzarolo, CS, Amin, O, Barčák, D, Bauer, A, Filipović Marijić, V, García-Varela, M, Servando Hernández-Orts, J, Yen Le, TT, Nachev, M, Orosová, M, Rigaud, T, Šariri, S, Wattier, R, Reyda, F and Sures, B (2023) Hooking the scientific community on thorny-headed worms: interesting and exciting facts, knowledge gaps and perspectives for research directions on Acanthocephala. Parasite 30, 23.CrossRefGoogle ScholarPubMed
Petrochenko, VI (1956) Acanthocephala of Domestic and wild Animals, vol. 1. Moscow: Izdatelstvo Akademii Nauk SSSR.Google Scholar
Presswell, B, García-Varela, M and Smales, LR (2018) Morphological and molecular characterization of two new species of Andracantha (Acanthocephala: Polymorphidae) from New Zealand shags (Phalacrocoracidae) and penguins (Spheniscidae) with a key to the species. Journal of Helminthology 92(6), 740751.CrossRefGoogle Scholar
Reuter, JS and Mathews, DH (2010) RNAstructure: Software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11, 129.CrossRefGoogle ScholarPubMed
Ru, SS, Yang, RJ, Chen, HX, Kuzmina, TA, Spraker, TR and Li, L (2022) Morphology, molecular characterization and phylogeny of Bolbosoma nipponicum Yamaguti, 1939 (Acanthocephala: Polymorphidae), a potential zoonotic parasite of human acanthocephaliasis. International Journal for Parasitology: Parasites and Wildlife 18, 212220.Google ScholarPubMed
Rudolphi, KA (1802) Fortsetzung der Beobachtungen über die Eingeweidewürmer. Archiv für Zoologie und Zootomie 3, 61125.Google Scholar
Sarwar, H, Zhao, WT, Kibet, CJ, Sitko, J and Nie, P (2021) Morphological and complete mitogenomic characterisation of the acanthocephalan Polymorphus minutus infecting the duck Anas platyrhynchos. Folia Parasitologica 68, e015.CrossRefGoogle ScholarPubMed
Schmidt, GD (1971) Acanthocephalan infections of man, with two new records. Journal of Parasitology 57, 582584.CrossRefGoogle ScholarPubMed
Song, R, Zhang, D, Deng, S, Ding, D, Liao, F and Liu, L (2016) The complete mitochondrial genome of Acanthosentis cheni (Acanthocephala: Quadrigyridae). Mitochondrial DNA Part B 1, 797798.CrossRefGoogle ScholarPubMed
Song, R, Zhang, D, Gao, J, Cheng, X, Xie, M, Li, H and Wu, Y (2019) Characterization of the complete mitochondrial genome of Brentisentis yangtzensis Yu & Wu, 1989 (Acanthocephala, Illiosentidae). ZooKeys 114.CrossRefGoogle Scholar
Steinauer, ML, Nickol, BB, Broughton, R and Ortí, G (2005) First sequenced mitochondrial genome from the phylum Acanthocephala (Leptorhynchoides thecatus) and its phylogenetic position within Metazoa. Journal of Molecular Evolution 60, 706715.CrossRefGoogle ScholarPubMed
Takahashi, K, Ito, T, Sato, T, Goto, M, Kawamoto, T, Fujinaga, A, Yanagawa, N, Saito, Y, Nakao, M, Hasegawa, H and Fujiya, M (2016) Infection with fully mature Corynosoma cf. validum causes ulcers in the human small intestine. Clinical Journal of Gastroenterology 9, 114117.CrossRefGoogle ScholarPubMed
Weber, M, Wey-Fabrizius, AR, Podsiadlowski, L, Witek, A, Schill, RO, Sugar, L, Herlyn, H and Hankeln, T (2013) Phylogenetic analyses of endoparasitic Acanthocephala based on mitochondrial genomes suggest secondary loss of sensory organs. Molecular Phylogenetics and Evolution 66, 182189.CrossRefGoogle ScholarPubMed
Xie, YY, Chen, HX, Kuzmina, TA, Lisitsyna, O and Li, L (2024) Novel gene arrangement in the mitochondrial genome of Aspersentis megarhynchus (Acanthocephala, Echinorhynchida, Heteracanthocephalidae), and its phylogenetic implications. Parasite 31, e63.CrossRefGoogle ScholarPubMed
Yagi, K, Ohbuchi, M, Uraguchi, K, Akao, H, Sakai, M, Nonaka, T and Oku, S (2002) A case report of Corynosoma villosum recovered from the human colon. Report of the Hokkaido Institute of Public Health 52, 1821.Google Scholar
Yamaguti, S (1963) Systema Helminthum. Volume V: Acanthocephala. New York: Interscience Publisher Inc.Google Scholar
Zhang, D, Gao, F l, Jakovlić, I, Zou, H, Zhang, J, Li, WX and Wang, GT (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20, 348355.CrossRefGoogle ScholarPubMed
Zhao, TY, Yang, RJ, , L, Ru, SS, Wayland, MT, Chen, HX, Li, YH and Li, L (2023). Phylomitogenomic analyses provided further evidence for the resurrection of the family Pseudoacanthocephalidae (Acanthocephala: Echinorhynchida). Animals 13, e1256.CrossRefGoogle ScholarPubMed
Supplementary material: File

Xie et al. supplementary material

Xie et al. supplementary material
Download Xie et al. supplementary material(File)
File 27.9 KB