Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T04:37:15.316Z Has data issue: false hasContentIssue false

Comparison of IgG3 responses to carbohydrates following mouse infection or immunization with six species of Trichinella

Published online by Cambridge University Press:  12 April 2024

M.A. Dea-Ayuela
Affiliation:
Departamento de Parasitologia, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, Ciudad Universitaria, 28040,- Madrid, Spain
A.R. Martinez-Fernandez
Affiliation:
Departamento de Parasitologia, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, Ciudad Universitaria, 28040,- Madrid, Spain
F. Bolas-Fernandez*
Affiliation:
Departamento de Parasitologia, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, Ciudad Universitaria, 28040,- Madrid, Spain
*
*Author for correspondence. Fax: 34 1 394 1815 E-mail: bolas@evcmax.sim.ucm.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The IgG3 antibody responses to carbohydrate epitopes were compared in BALB/c mice infected or immunized with six species of Trichinella: T. spiralis (T1), T. nativa (T2), T. britovi (T3), T6, T. nelsoni (T7), and T8. The dynamics of IgG3 responses and antigen recognition following infection or immunization were measured by ELISA and Western blot respectively, using glycosylated and deglycosylated larval crude extracts (LCE) prepared from homologous isolates. A high degree of protein glycosylation was found in all species and with similar profiles. Deglycosylation was completely achieved only in LCE from T1 and T6 isolates. The dynamics of IgG3 responses following infection or immunization significantly differed whereas the antigen recognition profiles appeared similar. Variations in the levels and antigen recognition patterns of IgG3 among the different species were apparent. The highest IgG3 levels were recorded in infections by the T8 isolate and the lowest in infections by the T6 isolate, whereas for immunization the highest IgG3 response was induced by T7 and the lowest by T8. Following antigen deglycosylation, the IgG3 responses were significantly reduced or abrogated and the recognition patterns markedly modified or suppressed in the different species of Trichinella.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2000

References

Almond, N.M. & Parkhouse, R.M. (1986) Immunoglobulin class specific responses to biochemically defined antigens of Trichinella spiralis . Parasite Immunology 8, 391406.CrossRefGoogle ScholarPubMed
Appleton, J.A., Bell, R.G., Homan, W. & van Knapen, F. (1991) Consensus on Trichinella spiralis antigens and antibodies. Parasitology Today 7, 190192.CrossRefGoogle Scholar
Bradford, M. (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248252.CrossRefGoogle Scholar
Denkers, E.Y., Hayes, C.E. & Wasson, D.L. (1991) Trichinella spiralis: influence of an immunodominant, carbohydrate-associated determinant on the host antibody response repertoire. Experimental Parasitology 41, 241250.Google Scholar
Drabek, D., Raguz, S., De, Wit, T.P., Dingjan, G.M., Savelkoul, H.F., Grosveld, F. & Hendriks, R.W. (1997) Correction of the X-linked immunodeficiency phenotype by transgenic expression of human Bruton tyrosine kinase under the control of the class II major histocompatibility complex Ea locus control region. Proceedings of the National Academy of Sciences, USA 94, 610615.CrossRefGoogle ScholarPubMed
Dunne, W.D. (1990) Schistosoma carbohydrates. Parasitology Today 6, 4548.CrossRefGoogle Scholar
Ellis, L.A., Reason, A.J., Morris, H.R., Dell, A., Iglesias, R., Ubeira, F. & Appleton, J.A. (1994) Glycans as targets for monoclonal antibodies that protect rats against Trichinella spiralis . Glycobiology 4, 585592.CrossRefGoogle ScholarPubMed
Ellis, L.A., McVay, C.S., Probert, M.A., Zhang, J., Bundle, D.R. & Appleton, J.A. (1997) Terminal β-linked tyvelose creates unique epitopes in Trichinella spiralis glycan antigens. Glycobiology 7, 383390.CrossRefGoogle ScholarPubMed
Ferguson, M.A.J., Homans, S.W., Dwek, R.A. & Rademacher, T.W. (1988) Glycosylphosphatidylinositol moiety that anchors Trypanosoma brucei variant surface antigen to the membrane. Science 239, 753759.CrossRefGoogle ScholarPubMed
Gamble, H.R., Anderson, W.R., Graham, C.E. & Murrell, K.D. (1983) Diagnosis of swine trichinellosis by enzyme-linked immunosorbent assay (ELISA) using an excretory–secretory antigen. Veterinary Parasitology 13, 349361.CrossRefGoogle ScholarPubMed
Greenspan, N.S. & Cooper, L.J.N. (1992) Intermolecular cooperativity: a clue to why mice have IgG3?. Immunology Today 13, 164168.CrossRefGoogle ScholarPubMed
Gold, A.M., Despommier, D.D. & Stephen, W.B. (1990) Partial characterization of two antigens secreted by L1 larvae of Trichinella spiralis . Molecular and Biochemical Parasitology 41, 187196.CrossRefGoogle ScholarPubMed
Jarvis, L.M. & Pritchard, D.I. (1992) An evaluation of the role of carbohydrate epitopes in immunity to Trichinella spiralis . Parasite Immunology 14, 489501.CrossRefGoogle ScholarPubMed
Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680685.CrossRefGoogle Scholar
Ljungstrom, I., Hammarstrom, L., Kociecka, W. & Smith, C.I. (1988) The sequential appearence of IgG subclasses and IgE during the course of Trichinella spiralis infection. Clinical and Experimental Immunology 74, 230235.Google ScholarPubMed
McLaren, D.J., Ortega-Pierres, G. & Parkhouse, R.M.E. (1987) Trichinella spiralis: immunocytochemical localization of surface and intracellular antigens using monoclonal antibody probes. Parasitology 94, 101114.CrossRefGoogle ScholarPubMed
McVay, C.S., Tsung, A. & Appleton, J. (1998) Participation of parasite surface glycoproteins in antibody-mediated protection of epithelial cells against Trichinella spiralis . Infection and Immunity 66, 19411945.CrossRefGoogle ScholarPubMed
Ortega-Pierres, G., Cayen, A., Clark, N.W.T. & Parkhouse, R.M.E. (1984) The occurence of antibodies to hidden and exposed determinants of surface antigens of Trichinella spiralis . Parasitology 88, 359363.CrossRefGoogle ScholarPubMed
Ortega-Pierres, G., Clark, N.W.T. & Parkhouse, R.M.E. (1986) Regional specialization of the surface of a parasite nematode. Parasite Immunology 8, 613617.CrossRefGoogle Scholar
Ortega-Pierres, G., Yepez-Mulia, L., Homan, W., Gamble, H.R., Lim, P.L., Takahashi, Y., Wasson, D.L. & Appleton, J.A. (1996) Workshop on a detailed characterization of Trichinella spiralis antigens: a platform for future studies on antigens and antibodies to this parasite. Parasite Inmunology 18, 273284.CrossRefGoogle ScholarPubMed
Parkhouse, R.M.E., Philip, M. & Ogilvie, B.M. (1981) Characterization of surface antigens of Trichinella spiralis infective larvae. Parasite Immunology 3, 339352.CrossRefGoogle ScholarPubMed
Parkhouse, R.M.E. & Ortega-Pierres, G. (1984) Stage-specific antigens of Trichinella spiralis . Parasitology 88, 623630.CrossRefGoogle ScholarPubMed
Pozio, E., La, Rosa, G., Rossi, P. & Murrell, K.D. (1992) Biological characterization of Trichinella isolates from various host species and geographical regions. Journal of Parasitology 78, 647653.CrossRefGoogle ScholarPubMed
Robinson, K., Bellamy, T. & Wakelin, D. (1994) Vaccination against the nematode Trichinella spiralis in high- and low-responder mice. Effects of different adjuvants upon protective immunity and immune responsiveness. Immunology 82, 261267.Google ScholarPubMed
Robinson, K., Bellamy, T., Chan, W.C. & Wakelin, D. (1995) High levels of protection induced by a 40-mer synthetic peptide vaccine against the intestinal nematode parasite Trichinella spiralis . Immunology 86, 495498.Google ScholarPubMed
Silberstein, D.S. & Despommier, D.D. (1984) Antigens of Trichinella spiralis that induce protective response in the mouse. Journal of Immunology 132, 898904.CrossRefGoogle ScholarPubMed
Snapper, C.M., McIntyre, T.M., Mandler, R., Pecanha, L.M.T., Finkelman, F.D. & Mond, J.J. (1992) Induction of IgG3 secretion by interferon-γ: a model for T cell-independent class switching in response to T-cell independent Type 2 antigens. Journal of Experimental Medicine 175, 13671371.CrossRefGoogle Scholar
Takahashi, Y. (1997) Antigens of Trichinella spiralis . Parasitology Today 13, 104106.CrossRefGoogle ScholarPubMed
Wakelin, D. & Lloyd, M. (1976) Immunity to primary and challenge infections of Trichinella spiralis in mice: a re-examination of conventional parameters. Parasitology 72, 173182.CrossRefGoogle ScholarPubMed
Wisnewski, N., McNeil, M., Grieve, R.B. & Wasson, D.L. (1993) Characterization of novel fucosyl -and tyvelosyl-contining glycoconjugates from Trichinella spiralis muscle stage larvae. Molecular and Biochemical Parasitology 61, 2536.CrossRefGoogle ScholarPubMed
Zakroff, S.G., Beck, L., Platzer, E.G. & Spiegelberg, H.L. (1989) The IgE and IgG subclass responses of mice to four helminth parasites. Cellular Imunology 119, 193201.CrossRefGoogle ScholarPubMed