Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T23:25:23.480Z Has data issue: false hasContentIssue false

Description, molecular characterization and life cycle of Serpentirhabdias mussuranae n. sp. (Nematoda: Rhabdiasidae) from Clelia clelia (Reptilia: Colubroidea) in Brazil

Published online by Cambridge University Press:  17 June 2019

Y. Kuzmin
Affiliation:
Department of Parasitology, I. I. Schmalhausen Institute of Zoology NAS of Ukraine, Kiev, Ukraine
V.V. Tkach
Affiliation:
Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA
F.T.V. Melo*
Affiliation:
Laboratory of Cell Biology and Helminthology ‘Prof. Dr. Reinalda Marisa Lanfredi’, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
*
Author for correspondence: F.T.V Melo, E-mail: ftiago86@gmail.com

Abstract

Serpentirhabdias mussuranae n. sp. is described from the lungs of the mussurana, Clelia clelia (Daudin, 1803), from vicinities of Lábrea, Amazonas State, Brazil. The species is characterized by the triangular oral opening, the presence of teeth (onchia) in the oesophastome, the excretory glands longer than the oesophagus and the tail abruptly narrowing in its anterior half and gradually tapering in posterior half. Among the Neotropical representatives of the genus, three species are known to possess the onchia in the oesophastome: S. atroxi, S. moi and S. viperidicus. Serpentirhabdias mussuranae n. sp. differs from S. atroxi and S. viperidicus by its triangular shape of the oral opening and the oesophastome in apical view, vs. round in the latter two congeners. Additionally, S. viperidicus has a larger oesophastome, 13–22 micrometers wide and 13–23 micrometers deep. The new species has relatively longer excretory glands than S. moi. The new species is morphologically and genetically close to S. atroxi, S. moi and S. viperidicus, all parasitic in Brazilian snakes, based on the presence of onchia and the comparison of nucleotide sequences of nuclear ribosomal DNA and mitochondrial cox1 gene (differences varied between 3.8% and 7.1%). Data on the life cycle of S. mussuranae n. sp. is provided, and the life cycle is typical of the genus Serpentirhabdias, with the combination of direct development and heterogony. Free-living larval stages and the adults of amphimictic free-living generation are described. The results of molecular phylogenetic analysis based on nuclear ribosomal internal transcribed spacer (ITS) + partial 28S region and partial mitochondrial cox1 gene are provided.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, MR (1978) Morphology and taxonomy of Rhabdias spp. (Nematoda: Rhabdiasidae) from reptiles and amphibians of southern Ontario. Canadian Journal of Zoology 56, 21272141.Google Scholar
Barrella, TH, dos Santos, KR and da Silva, RJ (2009) Rhabdias filicaudalis n. sp. (Nematoda: Rhabdiasidae) from the snake Spilotes pullatus (Serpentes: Colubridae) in Brazil. Journal of Helminthology 84, 292296.Google Scholar
Emmerich, E, Morais, DH and Silva, RJ (2018) High infection level of a snake, Xenodon merremii (Wagler in Spix, 1824) (Serpentes: Dipsadidae), with Serpentirhabdias cf. vellardi (Pereira, 1928) (Nematoda: Rhabdiasidae) in Brazil. Comparative Parasitology 85, 197201.Google Scholar
Fraga, R, Lima, AP, Prudente, ALC and Magnusson, WE (2013) Guia de cobras da região de Manaus – Amazônia Central [Guide to the snakes of the Manaus region – Central Amazonia]. Manaus, Editora Inpa.Google Scholar
Kumar, S, Stecher, G and Tamura, K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 18701874.Google Scholar
Kuzmin, Y (2013) Review of Rhabdiasidae (Nematoda) from the Holarctic. Zootaxa 3639, 176.Google Scholar
Kuzmin, Y, Tkach, VV and Snyder, SD (2003) The Nematode Genus Rhabdias (Nematoda: Rhabdiasidae) from Amphibians and Reptiles of the Nearctic. Comparative Parasitology 70, 101114.Google Scholar
Kuzmin, Y, Melo, FTV and Santos, JN (2014a) A new species of Serpentirhabdias Tkach, Kuzmin & Snyder, 2014 (Nematoda: Rhabdiasidae) parasitic in the brown ground snake Atractus major Boulenger (Reptilia: Serpentes: Dipsadidae) in Brazil. Systematic Parasitology 89, 101106.Google Scholar
Kuzmin, Y, Junker, K and Bain, O (2014b) Infective larvae of Rhabdiasidae (Nematoda): Comparative morphology of seven European species. Acta Parasitologica 59, 3141.Google Scholar
Kuzmin, Y, Giese, EG, Melo, FTV, Costa, PAFB, Maschio, GF and Santos, JN (2016) Description of Serpentirhabdias atroxi n. sp. (Nematoda: Rhabdiasidae), a parasite of Bothrops atrox (Linnaeus) (Reptilia: Serpentes: Viperidae) in Brazilian Amazonia. Systematic Parasitology 93, 3745.Google Scholar
Langford, GJ and Janovy, J Jr. (2009) Comparative life cycles and life histories of North American Rhabdias spp. (Nematoda: Rhabdiaisidae): Lungworms from snakes and anurans. Journal of Parasitology 95, 11451155.Google Scholar
Machado, SA, Kuzmin, Y, Tkach, VV, Santos, JN, Gonçalves, EC and Melo, FTV (2018) Description, biology and molecular characterisation of Serpentirhabdias moi n. sp. (Nematoda: Rhabdiasidae) from Chironius exoletus (Serpentes: Colubridae) in Brazil. Parasitology International 67, 829837.Google Scholar
Martínez-Salazar, EA and León-Régagnon, V (2006) Rhabdias lamothei n. sp. (Nematoda: Rhabdiasidae) from Leptodeira maculata(Colubridae) in Mexico, including new records of R. fuscovenosa (Railliet, 1899) Goodey, 1924. Zootaxa 1257, 2748.Google Scholar
Morais, DH, Aguiar, A, Müller, MI, Narciso, RB, Silva, LAF and Silva, RJ (2017) Morphometric and phylogenetic analyses of the Serpentirhabdias viperidicus n. sp. (Nematoda: Rhabdiasidae) from the lancehead snake Bothrops moojeni Hoge, 1966 (Reptilia: Serpentes: Viperidae) in Brazil. Journal of Helminthology 91, 360370.Google Scholar
Pereira, C (1927) Fauna helminthologica de ophidios brasileiros. Boletim Biologico São Paulo 10, 179185.Google Scholar
Pereira, C (1928) Fauna helmintologica dos ophidios brasileiros (2o). Rhabdias vellardi n. sp. Boletim Biologico São Paulo 11, 1322.Google Scholar
Pinto, CC and Lema, T (2002) Comportamento alimentar e dieta de serpentes, gêneros Boiruna e Clelia (Serpentes, Colubridae). Iheringia 92, 919.Google Scholar
Rambaut, A (2009) Figtree. Available at http://tree.bio.ed.ac.uk/software/figtree/ (accessed 16 January 2019).Google Scholar
Ronquist, F and Huelsenbeck, JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.Google Scholar
Streit, A (2008) Reproduction in Strongyloides (Nematoda): A life between sex and parthenogenesis. Parasitology 135, 285294.Google Scholar
Tkach, VV, Kuzmin, Y and Snyder, SD (2014) Molecular insight into systematics, host associations, life cycles and geographic distribution of the nematode family Rhabdiasidae. International Journal for Parasitology 44, 273284.Google Scholar
Tkach, VV and Pawlowski, J (1999) A new method of DNA extraction from the ethanol-fixed parasitic worms. Acta Parasitol. 44, 147148.Google Scholar
Vitt, LJ and Vangilder, LD (1983) Ecology of a snake community in northeastern Brazil. Amphibia Reptilia 4, 273296.Google Scholar