Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T03:20:23.869Z Has data issue: false hasContentIssue false

Description of two new species of the genus Thaparocleidus Jain, 1952 (Monogenea, Dactylogyridae) from freshwater fish in India: morphological and molecular phylogenetic evidence

Published online by Cambridge University Press:  28 March 2012

A. Chaudhary
Affiliation:
Molecular Taxonomy Laboratory, Department of Zoology, University Road, CCS University, Meerut (UP), 250004, India
H.S. Singh*
Affiliation:
Molecular Taxonomy Laboratory, Department of Zoology, University Road, CCS University, Meerut (UP), 250004, India

Abstract

The present paper describes the taxonomy of two new monogeneans, namely, Thaparocleidus longiphallus sp. n. and T. siloniansis sp. n., based on morphological, morphometric and molecular biological analysis, collected from the fish Wallago attu (Bloch & Schn.) and Silonia silondia (Ham.), respectively, at Meerut, UP, India. Genetic characterization of the two new species is based on sequence analyses of the rDNA 28S gene using neighbour-joining and maximum-parsimony techniques. These methods are congruent in depicting T. longiphallus sp. n. and T. siloniansis sp. n. as closely related species, but distinct from each other and forming a subclade with other species of the genus Thaparocleidus Jain, 1952. Secondary-structure models of the large subunit rDNA of the two species were also predicted using a combined comparative and thermodynamic approach. Molecular morphometric and phylogenetic relationships of the isolates of the Thaparocleidus species are discussed in detail.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blaxter, M.L., De Ley, P., Garey, J.R., Liu, L.X., Scheldeman, P., Vierstraete, J.R., Vanfleteren, J.R., Mackey, L.Y., Dorris, M., Frisse, L.M., Vida, J.T. & Thomas, W.K. (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392, 7175.CrossRefGoogle ScholarPubMed
Bloch, M.E. & Schneider, J.G. (1801) M.E. Blochii, Systema Ichthyologiae iconibus cx illustratum. Post obitum auctoris opus inchoatum absolvit, correxit, interpolavit Jo. Gottlob Schneider, Saxo. Berolini. Sumtibus Austoris Impressum et Bibliopolio Sanderiano Commissum. Systema Ichthyology 1584.Google Scholar
Chisholm, L.A., Whittington, I.D., Morga, J.A.T. & Adlard, R.D. (2001) The Calicotyle conundrum: do molecules reveal more than morphology? Systematic Parasitology 49, 8187.CrossRefGoogle ScholarPubMed
Ding, Y. & Lawrence, C.E. (2001) Statistical prediction of single stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond. Nucleic Acids Research 29, 10341046.CrossRefGoogle ScholarPubMed
Ding, Y. & Lawrence, C.E. (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Research 31, 72807301.CrossRefGoogle ScholarPubMed
Gusev, A.V. (1976) Freshwater Indian Monogenoidea. Principles of systematics, analysis of the world faunas and their evolution. Indian Journal of Helminthology 25 & 26 (1973 &1974), 1241.Google Scholar
Hamilton, F. (1822) An account of the fishes found in the river Ganges and its branches. 405 pp.Edinburgh, Archibald Constable.CrossRefGoogle Scholar
Jaeger, J.A., Turner, D.H. & Zuker, M. (1989) Improved predictions of secondary structures for RNA. Proceedings of the National Academy of Sciences of the United States of America 86, 77067710.CrossRefGoogle ScholarPubMed
Jain, S.L. (1952) Monogenea of Indian freshwater fishes. II. Thaparocleidus wallagonius n.g. & n. sp. (subfamily: Tetraonchinae) from the gills of Wallagonia attu (Bloch) from Lucknow. Indian Journal of Helminthology 4, 4348.Google Scholar
Jain, S.L. (1957) Monogenea of Indian freshwater fishes. V. Dactylogyrus multispiralis n. sp. (subfamily Dactylogyrinae) from the gill filaments of Silonia silondia (Ham), from Lucknow. Proceedings of the National Academy of Science Allahabad, Section B 27, 2630. [Abstract in: Annual Number. National Academy of Sciences, India (1956), 90–91.].Google Scholar
Jovelin, R. & Justine, J.L. (2001) Phylogenetic relationships within the polyopisthocotylean monogeneans (Platyhelminthes) inferred from partial 28S rDNA sequences. International Journal of Parasitology 31, 393401.CrossRefGoogle ScholarPubMed
Justine, J.L., Jovelin, R., Neifar, R., Mollaret, I., Lim, L.H.S., Hendrix, S.S. & Euzet, L. (2002) Phylogenetic positions of the Bothitrematidae and Neocalceostomatidae (Monoopisthocotylean Monogeneans) inferred from 28S rDNA sequences. Comparative Parasitology 69, 2025.CrossRefGoogle Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.CrossRefGoogle ScholarPubMed
Kulkarni, T. (1969) Studies on the monogenetic trematodes of fishes found in Hyderabad, Andhra Pradesh (India). Part II. Rivista di Parassitologia 30, 263282.Google Scholar
Kuracha, M.R., Rayavarapu, B., Kumar, S.D. & Rao, P.N. (2006) Comparison of secondary structure of the ribosomal internal transcribed spacer 2 (ITS2) of eight Lepidopteran species from diverse geographical locations. The Internet Journal of Genomics and Proteomics 2, Number 1. Available at websitehttp://www.ispub.com:80/journal/the-internet-journal-of-genomics-and-proteomics/volume-2-number-1/comparison-of-secondary-structure-of-the-ribosomal-internal-transcribed-spacer-2-its2-of-eight-lepidopteran-species-from-diverse-geographical-locations.html (accessed accessed 19 March 2012).Google Scholar
Lee, S.U., Chun, H.C. & Huh, S. (2007) Molecular phylogeny of parasitic platyhelminthes based on sequences of partial 28S rDNA D1 and mitochondrial cytochrome c oxidase subunit I. Korean Journal of Parasitology 45, 181189.CrossRefGoogle ScholarPubMed
Lim, L.H.S. (1990) Silurodiscoides Gussev, 1961 (Monogenea: Ancyrocephalidae) from Pangasius sutchi Fowler, 1931 (Pangasiidae) cultured in Peninsular Malaysia. Raffles Bulletin of Zoology 38, 5563.Google Scholar
Lim, L.H.S. (1996) Thaparocleidus Jain, 1952, the senior synonym of Silurodiscoides Gussev, 1976 (Monogenea: Ancylodiscoidinae). Systematic Parasitology 35, 207215.CrossRefGoogle Scholar
Lim, L.H.S., Timofeeva, T.A. & Gibson, D.I. (2001) Dactylogyridean monogeneans of the siluriform fishes of the Old World. Systematic Parasitology 50, 159197.CrossRefGoogle ScholarPubMed
Littlewood, D.T.J., Rohde, K. & Clough, K.A. (1998) The phylogenetic position of Udonella (Platyhelminthes). International Journal of Parasitology 28, 12411250.CrossRefGoogle ScholarPubMed
Lockyer, A.E., Olson, P.D. & Littlewood, D.T.J. (2003) Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): implications and a review of the cercomer theory. Biological Journal of Linnean Society 78, 155171.CrossRefGoogle Scholar
Malmberg, G. (1970) The excretory systems and the marginal hooks as a basis for the systematics of Gyrodactylus (Trematoda, Monogenea). Arkiv für Zoologi Serie 2, 1235.Google Scholar
Mollaret, I., Jamieson, B.G.M., Adlard, R.D., Hugall, A., Lecointre, G., Chombard, C. & Justine, J.L. (1997) Phylogenetic analysis of the Monogenea and their relationships with Digenea and Eucestoda inferred from 28S rDNA sequences. Molecular and Biochemical Parasitology 90, 433438.CrossRefGoogle ScholarPubMed
Mollaret, I., Jamieson, B.G.M. & Justine, J.L. (2000a) Phylogeny of the Monopisthocotylea and Polyopisthocotylea (Platyhelminthes) inferred from 28S rDNA sequences. International Journal of Parasitology 30, 171185.CrossRefGoogle ScholarPubMed
Mollaret, I., Lim, L.H.S. & Justine, J.L. (2000b) Phylogenetic position of the monogeneans Sundanonchus, Thaparocleidus, and Cichlidogyrus inferred from 28S rDNA sequences. International Journal of Parasitology 30, 659662.CrossRefGoogle ScholarPubMed
Olson, P.D. & Littlewood, D.T.J. (2002) Phylogenetics of the Monogenea – evidence from a medley of molecules. International Journal of Parasitology 32, 233244.CrossRefGoogle ScholarPubMed
Olson, P.D., Cribb, T.H., Tkach, V.V., Bray, R.A. & Littlewood, D.T.J. (2003) Phylogeny and classification of the digenea (Platyhelminthes: Trematoda). International Journal of Parasitology 33, 733755.CrossRefGoogle ScholarPubMed
Pandey, K.C., Agrawal, N., Vishwakarma, P. & Sharma, J. (2003) Redescription of some Indian species of Thaparocleidus Jain, 1952 (Monogenea), with aspects of the developmental biology and mode of attachment of T. pusillus (Gusev, 1976). Systematic Parasitology 54, 207221.CrossRefGoogle ScholarPubMed
Pouyaud, L., Desmarais, E., Deveney, M. & Pariselle, A. (2006) Phylogenetic relationships among monogenean gill parasites (Dactylogyridea, Ancyrocephalidae) infesting tilapiine hosts (Cichlidae): systematic and evolutionary implications. Molecular Phylogenetics and Evolution 38, 241249.CrossRefGoogle ScholarPubMed
Prasad, P.K., Tandon, V., Biswal, D.K., Goswami, L.M. & Chatterjee, A. (2009) Phylogenetic reconstruction using secondary structures and sequence motifs of ITS2 rDNA of Paragonimus westermani (Kerbert, 1878) Braun, 1899 (Digenea: Paragonimidae) and related species. BMC Genomics 10 (Suppl. 3), S25.CrossRefGoogle ScholarPubMed
Siebert, S. & Backofen, R. (2005) MARNA: multiple alignment and consensus structure prediction of RNAs based on sequence structure comparisons. Bioinformatics 21, 33523359.CrossRefGoogle ScholarPubMed
Šimková, A., Matejusová, I. & Cunningham, C.O. (2006) A molecular phylogeny of the Dactylogyridae sensu Kritsky & Boeger (1989) (Monogenea) based on the D1–D3 domains of large subunit rDNA. Parasitology 133, 4353.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Vilas, R., Criscione, C.D. & Blouin, M.S. (2005) A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites. Parasitology 131, 839846.CrossRefGoogle ScholarPubMed
Whittington, I.D., Deveney, M.R., Morgan, J.A.T., Chisholm, L.A. & Adlard, R.D. (2004) A preliminary phylogenetic analysis of the Capsalidae (Platyhelminthes: Monogenea: Monopisthocotylea) inferred from large subunit rDNA sequences. Parasitology 128, 511519.CrossRefGoogle ScholarPubMed
Wu, X.Y., Chilton, N.B., Zhu, X.Q., Xie, M.Q. & Li, A.X. (2005) Molecular and morphological evidence indicates that Pseudorhabdosynochus lantauensis (Monogenea: Diplectanidae) represents two species. Parasitology 130, 669677.CrossRefGoogle ScholarPubMed
Wu, X.Y., Zhu, X.Q., Xie, M.Q., Wang, J.Q. & Li, A.X. (2008) The radiation of Thaparocleidus (Monogenoidea: Dactylogyridae: Ancylodiscoidinae): phylogenetic analyses and taxonomic implications inferred from ribosomal DNA sequences. Parasitology Research 102, 283288.CrossRefGoogle ScholarPubMed
Zeng, J. (1988) A new species of Silurodiscoides. Journal of South China Normal University (Natural Science Edition) 105108(in Chinese).Google Scholar
Zuker, M. (1994) Prediction of RNA secondary structure by energy minimization computer analysis of sequence data, part II. pp. 267294in Griffin, A.M. & Griffin, H.G. (Eds) Methods in molecular biology, Vol. 25. Totowa, New Jersey, CRC Press.CrossRefGoogle Scholar
Zuker, M., Mathews, D.H. & Turner, D.H. (1999) Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. pp. 1143in Barciszewski, J. & Clark, B.F.C. (Eds) RNA biochemistry and biotechnology. Dordrecht, The Netherlands, Kluwer Academic Publications.CrossRefGoogle Scholar