Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T07:01:27.005Z Has data issue: false hasContentIssue false

The distribution of neuroactive substances within the cercaria of Sanguinicola inermis

Published online by Cambridge University Press:  05 June 2009

D.F. McMichael-Phillips
Affiliation:
School of Biological Sciences, Royal Holloway, University of London Egham, Surrey, TW20 OEX, UK
J.W. Lewis
Affiliation:
School of Biological Sciences, Royal Holloway, University of London Egham, Surrey, TW20 OEX, UK
M.C. Thorndyke*
Affiliation:
School of Biological Sciences, Royal Holloway, University of London Egham, Surrey, TW20 OEX, UK
*
2Author for correspondence.

Abstract

The serotoninergic and peptidergic components of the nervous system of the cercaria of Sanguinicola inermis (Digenea: Sanguinicolidae) were examined using whole-mount immunocytochemistry and a plan of the nervous system has been described. Antibodies to serotonin (5-hydroxytryptamine, 5-HT) and the neuropeptides, FMRFamide, GFNSALMFamide (S1) and SGPYSFNSGLTFamide (S2) were used in the study. Immunoreactivity (IR) was demonstrated to all but the S2 antisera and showed a similar fundamental distribution. IR was found in paired cerebral ganglia located anteriorly within the body and connected by a cerebral commissure. From the ganglia paired ventral and dorsal longitudinal nerve cords extend anteriorly into the cephalic organ and into the body. There is no apparent connection with the tail. Several transverse commissures connect the longitudinal nerve cords throughout the body and several associated cell bodies have been located. A double-stranded dorsal and ventral longitudinal nerve cord extends the length of the tail and six cell bodies are associated with these cords, uniquely demonstrating either FMRFamide and S1, or 5-HT-like IR. Only 5-HT-like IR was found to extend into the posterior tail furcae and there appears to be a lack of any peripheral tegumental innervation. Double-labelling experiments suggest that the serotoninergic and peptidergic components of the cercarial nervous system are distinct.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basch, P.F. & Gupta, B.C. (1988) Immunocytochemical localization of regulatory peptides in six species of trematode parasites. Comparative Biochemistry and Physiology 91C, 565570.Google Scholar
Beretta, C. (1969) 5-hydroxytryptamine as neuro-muscular transmitter in Fasciola hepatica. Federation Proceedings 28,793.Google Scholar
Brownlee, D.J.A., Fairweather, I., Johnston, C.F. & Brennan, G.P. (1993a) Immunocytochemistry and immunogold labelling of SALMamide immunoreactivity in the nervous system of the trematode, Schistosoma mansoni. Regulatory Peptides 47, 97Google Scholar
Brownlee, D.J.A., Fairweather, I., Johnston, C.F. & Brennan, G.P. (1993b) Immunocytochemistry and immunogold labelling of neuropeptide immunoreactiviries in the nervous system of the nematode Ascaris suum. Regulatory Peptides 47, 98.Google Scholar
Brownlee, D.J.A., Fairweather, I., Johnston, C.F., Thorndyke, M.C., Shaw, C. & Halton, D.W. (1993c) Neurochemistry of the enteric and peripheral nervous system of the nematode Ascaris suum. Regulatory Peptides 47, 98.Google Scholar
Brownlee, D.J., Fairweather, I., Johnston, C.F., Thorndyke, M.C. & Skuce, P.J. (1995) Immunocytochemical demonstration of a SALMFamide-like neuropeptide in the nervous system of adult and larval stages of the human blood fluke Schistosoma mansoni. Parasitology 110, 143153.CrossRefGoogle ScholarPubMed
Brukner, D.A. & Voge, M. (1974) The nervous system of larval Schistosoma mansoni as revealed by acetylcholinesterase staining. Journal of Parasitology 60, 437446.CrossRefGoogle Scholar
Bueding, E., Schiller, E.L. & Bougeois, J.G. (1967) Some physiological, biochemical and morphological effects of TRIS (p-aminophenyl) carbonium salts (TAG) on Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene 16, 500515.CrossRefGoogle Scholar
Consolazione, A., Milstein, C., Wright, B. & Cuello, A.C. (1981) Immunocytochemical detection of serotonin with monoclonal antibodies. Journal of Histochemistry and Cytochemistry 29, 14251430.CrossRefGoogle ScholarPubMed
Cottrell, G.A., Schot, L.P.C. & Dockray, G.J. (1983) Identification and probable role of a single neurone containing the neuropeptide Helix FMRFamide. Nature 304, 638640.Google ScholarPubMed
Cowden, C., Stretton, A.O.W. & Davis, R. (1989) AF1, a sequenced bioactive neuropeptide isolated from the nematode Ascaris suum. Neuron 2, 14651473.CrossRefGoogle ScholarPubMed
Curry, W.J., Shaw, C., Johnston, C.F., Thim, L. & Buchanan, K.D. (1992) Neuropeptide F: Primary structure from the turbellarian, Artioposthia triangulata. Comparative Biochemistry and Physiology 101C, 269274.Google Scholar
Day, T.A., Maule, A.G., Shaw, C., Halton, D.W., Moore, S., Bennett, J.L. & Pax, R.A. (1994) Platyhelminth FMRFamide-related peptides (FaRPs) contract Schistosoma mansoni (Trematoda: Digenea) muscle fibres in vitro. Parasitology 109, 455459.CrossRefGoogle ScholarPubMed
Dockray, G.J., Reeve, J.R., Shively, J., Gayton, R.J. & Barnard, C.S. (1983) A novel active pentapeptide from chicken brain identified by antibodies to FMRFamide. Nature 305, 328330.Google ScholarPubMed
Elphick, M.R., Price, D.A., Lee, T.D. & Thorndyke, M.C. (1991a) The SALMFamides: a new family of neuropeptides isolated from an echinoderm. Proceedings of the Royal Society of London, B, 243, 12211227.Google ScholarPubMed
Elphick, M.R., Reeve, J.R., Burke, R.D. & Thorndyke, M.C. (1991b) Isolation of the neuropeptide SALMFamide-1 from starfish using a new antiserum. Peptides 12, 455459.Google ScholarPubMed
Fairweather, I. & Halton, D.W. (1991) Neuropeptides in platyhelminths. Parasitology 102, S77–S92.CrossRefGoogle ScholarPubMed
Fairweather, I., Maule, A.G., Mitchell, S.H., Johnston, C.F. & Halton, D.W. (1987) Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) in the nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea). Parasitology Research 73, 255258.CrossRefGoogle ScholarPubMed
Fairweather, I., Mahendrasinghan, S., Johnston, C.F., Halton, D.W., McCullough, J.S. & Shaw, C. (1990) An ontogenetic study of the cholinergic and serotoninergic nervous systems in Trilocularia acanthiaevulgaris (Cestoda, Tetraphyliidea). Parasitology Research 76, 486496.CrossRefGoogle Scholar
Fretterer, R.H., Pax, R.A. & Bennett, J.L. (1977) Schistosoma mansoni: direct method for simultaneous recording of electrical and motor activity. Experimental Parasitology 43, 286294.Google Scholar
Greenberg, M.J. & Price, D.A. (1979) FMRFamide, a cardioexcitatory neuropeptide of molluscs: an agent in search of a mission. American Zoologist 19, 163174.Google Scholar
Greenberg, M.J. & Price, D.A. (1980) Cardioregulatory peptides in molluscs. pp. 107126in Bloom, F.E. (Ed.): Peptides: integrators of cell and tissue function, New York, Raven Press.Google Scholar
Greenberg, M.J., Painter, S.D., Doble, K.E., Nagle, G.T., Price, D.A. & Lehman, H.K. (1983) The molluscan neurosecretory peptide FMRFamide: comparative pharmacology and relationship to the enkephalins. Federation Proceedings 42, 8286.Google Scholar
Greenberg, M.J., Price, D.A. & Lehman, H.K. (1985) FMRFamide-like peptides of molluscs and vertebrates: distribution and evidence of function. pp. 370376in Kobayashi, H. et al. (Eds) Neurosecretion and the biology of neuropeptides, Springer-Verlag.Google Scholar
Grimmelikhuijzen, C.J.P. (1986) FMRFamide -like peptides in the primitive nervous systems of coelenterates and complex nervous systems of higher animals. pp. 103115in Stefano, G.B. (Ed.) Handbook of comparative aspects ofopioids and related neuropeptide mediators. Boca Ratan, Florida.Google Scholar
Grimmelikhuijzen, C.J.P., Graff, D. & McFarlane, I.D. (1989) Neurones and neuropeptides in coelenterates. Archives of Histology and Cytology 52(Suppl), 265278.Google ScholarPubMed
Gustafsson, M.K.S. (1987) Immunocytochemical demonstration of neuropeptides and serotonin in the nervous system of adult Schistosoma mansoni. Parasitology Research 74, 168174.CrossRefGoogle ScholarPubMed
Gustafsson, M.K.S. & Wikgren, M.V. (1981) Peptidergic and aminergic neurones in adult Diphyllobothrium dendriticum Nitzsch, 1824 (Cestoda, Pseudophyllidea). Zeitschrift für Parasitenkunde 64, 121134.CrossRefGoogle Scholar
Gustafsson, M.K.S., Wikgren, M.C., Karhi, T.J. & Schot, L.P.C. (1985) Immunocytochemical demonstration of neuropeptides and serotonin in the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 240, 255260.CrossRefGoogle ScholarPubMed
Gustafsson, M.K.S., Lehtonen, M.A.I. & Sundler, F. (1986) Immunocytochemical evidence for the presence of ‘mammalian’ neurohormonal peptides in neurones of the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 243, 4149.CrossRefGoogle ScholarPubMed
Halton, D.W., Shaw, C.S., Maule, A.G. & Smart, D. (1994) Regulatory peptides in helminth parasites. Advances in Parasitology 34, 163227.CrossRefGoogle ScholarPubMed
Holmes, S.D. & Fairweather, I. (1984) Fasciola hepatica. The effects of neuropharmacological agents upon in vitro motility. Experimental Parasitology 58, 194208.CrossRefGoogle ScholarPubMed
Johnston, R.N., Shaw, C., Halton, D.W., Verhaert, P. & Baguna, J. (1995) GYIRFamide: a novel FMRFamide-related peptide (FaRP) form the triclad turbellarian Dugesia tigrina. Biochemical and Biophysical Research Communications 209, 689–687.CrossRefGoogle ScholarPubMed
Kirk, R.S. & Lewis, J.W. (1992) The laboratory maintenance of Sanguinicola inermis Plehn, 1905 (Digenea: Sanguinicolidae), Parasitology 104, 121127.CrossRefGoogle ScholarPubMed
Krajniak, K.G. & Price, D.A. (1990) Authentic FMRFamide is present in the polychaete Nereis virens. Peptides 11, 7577.Google ScholarPubMed
Kuhlman, J.R., Li, C. & Calabrese, R.L. (1985) FMRFamide-like substances in the leech. II. Bioactivity on the heartbeat system. Journal of Neurochemistry 5, 23102317.Google Scholar
Lee, R.S. (1990) The development of Sanguinicola inermis Plehn, 1905 (Digenea: Sanguinicolidae) in the common carp Cyprinus carpio L. PhD thesis. Royal Holloway and Bedford New College, University of London. 499 pp.Google Scholar
Lehman, H.K. & Greenberg, M.J. (1987a) Localisation of FMRFamide-like peptides in the snail Helix aspersa. Journal of Experimental Biology 131, 3753.CrossRefGoogle ScholarPubMed
Lehman, H.K. & Greenberg, M.J. (1987b) The actions of FMRFamide-like peptides on visceral and somatic muscles of the snail Helix aspersa. Journal of Experimental Biology 131, 5568.CrossRefGoogle ScholarPubMed
Lewert, R.M. & Hopkins, D.R. (1965) Cholinesterase activity in Schistosoma mansoni cercariae. Journal of Parasitology 51, 616.Google Scholar
Magee, R.M., Fairweather, I., Johnston, C.F., Halton, D.W. & Shaw, C. (1989) Immunocytochemical demonstration of neuropeptides in the nervous system of the liver fluke, Fasdola hepatica (Trematoda, Digenea). Parasitology 98, 227238.CrossRefGoogle ScholarPubMed
Mansour, T.E. (1984) Serotonin receptors in parasitic worms. Advances in Parasitology 23, 136.Google ScholarPubMed
Marks, N.J., Halton, D.W., Maule, A.G., Brennan, G.P., Shaw, C., Southgate, V.R. & Johnston, C.F. (1995) Comparative analyses of the neuropeptide F (NPF)- and FMRFamide- related peptide (FaRP)- immunoreactivities in Fasciola hepatica and Schistosoma spp. Parasitology 110, 371381.CrossRefGoogle ScholarPubMed
Maule, A.G., Halton, D.W., Johnston, C.F., Fairweather, I. & Shaw, C. (1989) Immunocytochemical demonstration of neuropeptides in the fish-gill parasite Diclidophora merlangi (Monogenoidea). International Journal for Parasitology 19, 307316.CrossRefGoogle ScholarPubMed
Maule, A.G., Halton, D.W., Johnston, C.F., Shaw, C. & Fairweather, I. (1990a) The serotoninergic, cholinergic and peptidergic components of the nervous system in the monogenean parasite, Diclidophora merlangi: a cytochemical study. Parasitology 100, 255273.CrossRefGoogle ScholarPubMed
Maule, A.G., Halton, D.W., Johnston, C.F., Shaw, C. & Fairweather, I. (1990b) A cytochemical study of the serotoninergic, cholinergic and peptidergic components of the reproductive system in the monogenean parasite, Diclidophora merlangi. Parasitology Research 76, 409419.CrossRefGoogle ScholarPubMed
Maule, A.G., Shaw, C., Halton, D.W., Thim, L., Johnston, C.F., Fairweather, I. & Buchanan, K.D. (1991) Neuropeptide F: a novel parasitic flatworm regulatory peptide from Moniezia expansa (Cestoda: Cyclophyllidea). Parasitology 102, 309316.CrossRefGoogle Scholar
Maule, A.G., Shaw, C., Halton, D. & Thim, L. (1993) GNFFRamide: A novel FMRFamide-immunoreactive peptide isolated from the sheep tapeworm Monezia expansa. Biochemical and Biophysical Research Communications 193, 10541060.CrossRefGoogle Scholar
Maule, A.G., Shaw, C., Bowman, J.W., Halton, D.W., Thompson, D.P., Geary, T.G. & Thim, L. (1994a) KSAYMRFamide: A novel FMRFamide-related heptapeptide from the free-living nematode Pangrellus redivivus which is myoactive in the parasitic nematode Ascaris suum. Biochemical and Biophysical Research Communications 200, 973980.CrossRefGoogle Scholar
Maule, A.G., Shaw, C., Halton, D.W., Curry, W.J. & Thim, L. (1994b) RYIRFamide: a turbellarian FMRFamide-related peptide (FaRP). Regulatory Peptides 50, 3743.CrossRefGoogle ScholarPubMed
McKay, D.M., Halton, D.W., Allen, J.M. & Fairweather, I. (1989) The effects of cholinergic and serotoninergic drugs on morility in vitro of Haplometra cylindracea (Trematoda: Digenea). Parasitology 99, 241252.CrossRefGoogle ScholarPubMed
McKay, D.M., Halton, D.W., Johnston, C.F., Fairweather, I. & Shaw, C. (1990) Occurrence and distribution of putative neurotransmitters in the frog-lung parasite Haplometra cylindracea (Trematoda: Digenea). Parasitology Research 76, 509517.CrossRefGoogle ScholarPubMed
McKay, D.M., Halton, D.W., Johnston, C.F., Fairweather, I. & Shaw, C. (1991) Cytochemical demonstration of cholinergic, serotoninergic and peptidergic nerve elements in Gorgoderina vitelliloba (Trematoda: Digenea). International Journal for Parasitology 21, 7180.CrossRefGoogle ScholarPubMed
McMichael-Phillips, D.F. (1992) The functional biology of Sanguinicola inermis, Plehn 1905, (Digenea: Sanguinicolidae). PhD thesis. Royal Holloway and Bedford New College, University of London. 382 pp.Google Scholar
Mettrick, D.F. (1989) The role of 5-hydroxytryptamine 5-HT; serotonin) in glucose transport, intermediary carbohydrate metabolism and helminth neurobiology. pp. 1324in Bennet, E., Behm, C. & Bryant, C. (Eds) Comparative biochemistry of parasitic helminths. London and New York, Chapman and Hall.CrossRefGoogle Scholar
Moore, S.J. & Thorndyke, M.C. (1994) Immunocytochemical mapping of the novel echinoderm neuropeptide SALMFamide 1 (S1) in the starfish Asterias rubens. Cell and Tissue Research 274, 605618.CrossRefGoogle Scholar
Pan, J.Z., Halton, D.W., Shaw, C., Maule, A.G. & Johnston, C.F. (1994) Serotonin and neuropeptide immunoreactivities in the intramolluscan stages of three marine trematode parasites. Parasitology Research 80, 288395.CrossRefGoogle ScholarPubMed
Panitz, E. & Knapp, S.E. (1967) Acetylcholinesterase activity in Fasdola hepatica miracidia. Journal of Parasitology 53, 354.CrossRefGoogle ScholarPubMed
Pax, R.A., Siefker, C. & Bennett, J.L. (1984) Schistosoma mansoni: differences in acetylcholine, dopamine and serotonin control of circular and longitudinal parasite muscles. Experimental Parasitology 58, 314324.CrossRefGoogle ScholarPubMed
Price, D.A. & Greenberg, M.J. (1977) Structure of a molluscan cardioexcitatory neuropeptide. Science 197, 670671.CrossRefGoogle ScholarPubMed
Riddell, J.H., Whitfield, P.J., Balogun, M.A. & Thorndyke, M.C. (1991) FMRFamide-like peptides in the nervous and endocrine systems of the digenean helminth Echinostoma liei. Acta Zoologica (Stockholm) 72, 15.CrossRefGoogle Scholar
Simon-Martin, F. & Rojo-Vazquez, F.A. (1984) Nota previa sobre la distribucion de las papilas sensoriales de la cercaria de Sanguinicola sp. (Salmanaca, Spain). Revista Iberica de Parasitologia 44, 99100.Google Scholar
Skuce, P.J., Johnston, C.F., Fairweather, I., Halton, D.W. & Shaw, C. (1990) A confocal scanning laser microscope study of the peptidergic and serotoninergic components of the nervous system in larval Schistosoma mansoni. Parasitology 101, 227234.CrossRefGoogle ScholarPubMed
Sukhdeo, M.V.K. & Mettrick, D.F. (1987) Parasite behaviour: understanding platyhelminth responses. Advances in Parasitology 26, 73144.Google ScholarPubMed
Veenstra, J.A. (1988) Immunocytochemical demonstration of vertebrate peptides in invertebrates: the homology concept. Neuropeptides 12, 4954.CrossRefGoogle ScholarPubMed
Wikgren, M.C. & Reuter, M. (1985) Neuropeptides in a microturbellarian – whole mount immunocytochemistry. Peptides 693, 471475.CrossRefGoogle Scholar
Wikgren, M., Reuter, M. & Gustafsson, M. (1986) Neuropeptides in free-living and parasitic flatworms (Platyhelminthes). An immunocytochemical study. Hydrobiologia 132, 9399.CrossRefGoogle Scholar
Wikgren, M.C. & Thorndyke, M.C. (1990) An echinoderm neuropeptide in flatworms?. Acta Academiae Aboensis Ser. B. 50, 4552.Google Scholar