Published online by Cambridge University Press: 13 November 2015
To test the hypothesis that modulation of hepatic microsomal sulphoxidation and sulphonation by the cytochrome P450 inhibitor piperonyl butoxide could increase bioavailability of albendazole, the present study was undertaken to understand the pharmacokinetics of albendazole in goats at a dose of 7.5 mg kg− 1 body weight with and without co-administration with piperonyl butoxide at 63.0 mg kg− 1 body weight. Plasma albendazole sulphoxide metabolite, the anthelmintically active moiety, reached its maximum concentration of 0.322 ± 0.045 μg ml− 1 and 0.384 ± 0.013 μg ml− 1 at 18 h and 24 h after administration of albendazole alone and co-administration of albendazole with piperonyl butoxide, respectively. Analysis of the data revealed statistically increased albendazole sulphoxide levels at 24 (P < 0.001), 30 (P < 0.001) and 36 h (P < 0.01) after administration of albendazole with piperonyl butoxide, with statistically increased levels of albendazole sulphone at 24, 30 and 48 h after administration. No significance difference (P > 0.05) in values of maximum concentration (normal and calculated) could be observed between groups of goats. However, values of time to reach the concentration maximum (normal and calculated), area under the concentration–time curve (0–∞ and calculated), minimum residence time, distribution half-life, elimination half-life and total area under the first movement of plasma drug concentration–time curve were significantly higher (P < 0.05) in plasma levels of albendazole sulphoxide in goats following single oral co-administration of albendazole with piperonyl butoxide. The faecal egg count reduction and lower 95% confidence limit for the group treated with albendazole alone were 97 and 68%, while for co-administration of albendazole and piperonyl butoxide the values were 99 and 97%, respectively. The ED50 for egg hatch was 0.196, indicating suspected resistance to benzimidazole anthelmintics. The drug combination proved efficacious against an albendazole-resistant nematode parasite population in goats.