Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T04:24:43.917Z Has data issue: false hasContentIssue false

Genetic characteristics of Chinese isolates of the tapeworm Taenia pisiformis based on two mitochondrial genes

Published online by Cambridge University Press:  02 April 2014

D.Y. Yang
Affiliation:
Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an625014, China
Y.J. Ren
Affiliation:
Sichuan Academy of Animal Science, Chengdu, 610066, China
Y. Fu
Affiliation:
Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an625014, China
Y. Xie
Affiliation:
Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an625014, China
X. Nong
Affiliation:
Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an625014, China
X.B. Gu
Affiliation:
Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an625014, China
S.X. Wang
Affiliation:
Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an625014, China
X.R. Peng
Affiliation:
Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an625014, China
G.Y. Yang*
Affiliation:
Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an625014, China

Abstract

Cysticercosis is caused by infections with embryonated eggs of the tapeworm Taenia pisiformis. Knowledge of the genetic characteristics of T. pisiformis could be applied to study the epidemiology and transmission of this parasite. In this study, 61 isolates of intraperitoneal cysticerci from eight geographically distinct regions in Sichuan province, China, were subjected to a molecular analysis in order to determine their intra-regional genetic characteristics. Partial sequences of the mitochondrial cytochrome c oxidase subunit I (cox1, 1427 bp) and NADH dehydrogenase 1 (nad1, 738 bp) were concatenated. Five haplotypes were identified, and 89.04% of total genetic variation was found in collections of T. pisiformis isolates from a single region. According to the phylogenetic reconstruction, the T. pisiformis isolates from eight regions did not form geographical clusters. Our study highlights the genetic characteristics of T.pisiformis with the aim of accelerating the genetic research and control of cysticercosis.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagrade, G., Kirjusina, M., Vismanis, K. & Ozoliņs, J. (2009) Helminth parasites of the wolf Canis lupus from Latvia. Journal of Helminthology 83, 6368.CrossRefGoogle ScholarPubMed
Baird, H.P., Miller, K.J. & Stark, J.S. (2012) Genetic population structure in the antarctic benthos: insights from the widespread amphipod, Orchomenella franklin. PLoS One 7, e34363.CrossRefGoogle Scholar
Bandelt, H.J., Forster, P. & Röhl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology Reports 16, 3748.Google ScholarPubMed
Barbosa, A.M., Thode, G., Real, R., Feliu, C. & Vargas, J.M. (2012) Phylogeographic triangulation: using predator–prey–parasite interactions to infer population history from partial genetic information. PLoS One 7, e50877.CrossRefGoogle ScholarPubMed
Burland, T.G. (2000) DNASTAR's Lasergene sequence analysis software. Methods in Molecular Biology 132, 7191.Google ScholarPubMed
Excoffier, L., Laval, G. & Schneider, S. (2007) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bio-informatics Online 1, 4750.Google ScholarPubMed
Hamrick, J.L., Godt, M.J.W. & Sherman-Broyles, L.S. (1995) Gene flow among plant populations: evidence from genetic markers. pp. 215232in Hoch, P.C. & Stephnon, A.G. (Eds) Experimental and molecular approaches to plant biosystematics. St. Louis, USA, Missouri Botanical Garden.Google Scholar
Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754755.CrossRefGoogle ScholarPubMed
Hüttner, M., Nakao, M., Wassermann, T., Siefert, L., Boomker, J.D., Dinkel, A., Sako, Y., Mackenstedt, U., Romig, T. & Ito, A. (2008) Genetic characterization and phylogenetic position of Echinococcus felidis (Cestoda: Taeniidae) from the African lion. International Journal for Parasitology 38, 861868.CrossRefGoogle ScholarPubMed
Jeon, H.K., Kim, K.H. & Eom, K.S. (2007) Complete sequence of the mitochondrial genome of Taenia saginata: comparison with T. solium and T. asiatica. Parasitology International 56, 243246.CrossRefGoogle Scholar
Jia, W.Z., Yan, H.B., Guo, A.J., Zhu, X.Q., Wang, Y.C., Shi, W.G., Chen, H.T., Zhan, F., Zhang, S.H., Fu, B.Q., Littlewood, D.T. & Cai, X.P. (2010) Complete mitochondrial genomes of Taenia multiceps, T. hydatigena and T. pisiformis: additional molecular markers for a tapeworm genus of human and animal health significance. BMC Genomics 11, 447.CrossRefGoogle Scholar
Lahmar, S., Sarciron, M.E., Rouiss, M. & Mensi, M. (2008) Echinococcus granulosus and other intestinal helminths in semi-stray dogs in Tunisia: infection and re-infection rates. Tunisie Médicale 86, 657664.Google ScholarPubMed
Liu, G.H., Lin, R.Q., Li, M.W., Liu, W., Liu, Y., Yuan, Z.G., Song, H.Q., Zhao, G.H., Zhang, K.X. & Zhu, X.Q. (2011) The complete mitochondrial genomes of three cestode species of Taenia infecting animals and humans. Molecular Biology Reports 38, 22492256.CrossRefGoogle ScholarPubMed
Martínez-Moreno, F.J., Hernández, S., López-Cobos, E., Becerra, C., Acosta, I. & Martínez-Moreno, A. (2007) Estimation of canine intestinal parasites in Córdoba (Spain) and their risk to public health. Veterinary Parasitology 143, 713.CrossRefGoogle ScholarPubMed
Morjan, C.L. & Rieseberg, L.H. (2004) How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles. Molecular Ecology 13, 13411356.CrossRefGoogle ScholarPubMed
Nakao, M., Xiao, N., Okamoto, M. & Yanagida, T. (2009) Geographic pattern of genetic variation in the fox tapeworm Echinococcus multilocularis. Parasitology International 58, 384389.CrossRefGoogle ScholarPubMed
Neigel, J.E. & Abise, J.C. (1993) Application of random walk model to geographic distribution of animal mitochondrial DNA variation. Genetics 135, 12091220.CrossRefGoogle ScholarPubMed
Rogers, A.R. & Harpending, H. (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molecular Phylogenetics and Evolution 9, 552569.Google ScholarPubMed
Rozas, J., Sánchez-DelBarrio, J.C., Messeguer, X. & Rozas, R. (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 24962497.CrossRefGoogle ScholarPubMed
Saeed, I., Maddox-Hyttel, C., Monrad, J. & Kapel, C.M. (2006) Helminths of red foxes (Vulpes vulpes) in Denmark. Veterinary Parasitology 139, 13.CrossRefGoogle ScholarPubMed
Sambrook, J., Fristsch, E.F. & Maniatis, T. (2001) Molecular cloning – A laboratory manual. 3rd edn. pp. 463470. New York, Cold Spring Harbor Laboratory Press.Google Scholar
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Phylogenetics and Evolution 24, 15961599.Google ScholarPubMed
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 48764882.CrossRefGoogle ScholarPubMed
Tsubota, K., Nakatsuji, S., Matsumoto, M., Fujihira, S., Yoshizawa, K., Okazaki, Y., Murakami, Y., Anagawa, A., Oku, Y. & Oishi, Y. (2009) Abdominal cysticercosis in a Cynomolgus monkey. Veterinary Parasitology 161, 339341.CrossRefGoogle Scholar
Yang, D.Y., Fu, Y., Wu, X.H., Xie, Y., Nie, H.M., Chen, L., Nong, X., Gu, X.B., Wang, S.X., Peng, X.R., Yan, N., Zhang, R.H., Zheng, W.P. & Yang, G.Y. (2012) Annotation of the transcriptome from Taenia pisiformis and its comparative analysis with three Taeniidae species. PLoS One 7, e32283.CrossRefGoogle ScholarPubMed
Zhou, Y.X., Du, A.F., Zhang, X.J., Wu, Y.M., Tong, F.Y. & Wu, G.Y. (2008) Research on harmfulness of rabbit Cysticercus pisiformis. Journal of Zhejiang Agricultural Science 3, 372373.Google Scholar
Zink, R.M. & Barrowclough, G.F. (2008) Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology 17, 21072121.CrossRefGoogle ScholarPubMed