Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T12:15:20.108Z Has data issue: false hasContentIssue false

A hidden break in the 28.0S rRNA from Diphyllobothrium dendriticum

Published online by Cambridge University Press:  05 June 2009

K. A. Karlstedt
Affiliation:
Department of Biology, Åbo Akademi University, SF-20520 Åbo, Finland
G. I. L. Paatero
Affiliation:
Department of Biology, Åbo Akademi University, SF-20520 Åbo, Finland
J.-H. Mäkelä
Affiliation:
Department of Biology, Åbo Akademi University, SF-20520 Åbo, Finland
B.-J. Wikgren
Affiliation:
Department of Biology, Åbo Akademi University, SF-20520 Åbo, Finland

Abstract

Nondenatured and denatured total RNA from the tapeworm Diphyllobothrium dendriticum (Cestoda) was analysed by agarose gel electrophoresis. It was found that the large subunit ribosomal RNA (lrRNA) is 28.0S and the small subunit ribosomal RNA (srRNA) is 19.5S. Following denaturation the 28.0S rRNA was disrupted into a 19.5S subfragment and a 20.7S subfragment due to the presence of a centrally located hidden break. By hybridization of Northern blot membranes with oligonucleotide probes specific for the 5′- and 3′-ends of the lrRNA respectively, we have shown that the 19.5S sub-fragment is from the 5′-end (the α-subfragment) and the 20.7S subfragment from the 3′-end (the β-subfragment) of the 28.0S rRNA of D. dendriticum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agosin, M., Repetto, Y. & Dicowsky, L. (1971) Ribonucleic acid of Echinococcus granulosus protoscolices. Experimental Parasitology, 30, 233243.CrossRefGoogle ScholarPubMed
Applebaum, S. W., Ebstein, R. P. & Wyatt, G. R. (1966) Dissociation of ribosomal ribonucleic acid from silkmoth pupae by heat and dimethylsulfoxide; evidence for specific cleavage points. Journal of Molecular Biology, 21, 2941.CrossRefGoogle Scholar
Cammarano, P., Pons, S. & Londei, P. (1975) Discontinuity of the large ribosomal subunit RNA and rRNA molecular weights in eukaryote evolution. Acta Biologica et Medica Germanica, 34, 11231135.Google ScholarPubMed
Chan, Y.-L., Olvera, J. & Wool, I. G. (1983) The structure of rat 28S ribosomal ribonucleic acid inferred from the sequence of nucleotides in a gene. Nucleic Acids Research, 11, 78197831.CrossRefGoogle ScholarPubMed
Clark, C. G. (1987) On the evolution of ribosomal RNA. Journal of Molecular Evolution, 25, 343350.CrossRefGoogle ScholarPubMed
De Lanversin, G. & Jacq, B. (1989) Sequence and secondary structure of the central domain of Drosophila 26S rRNA: A universal model for the central domain of the large rRNA containing the region in which the central break may happen. Journal of Molecular Evolution, 28, 403417.CrossRefGoogle ScholarPubMed
Devereux, J., Haeberli, P. & Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research, 12, 387395.CrossRefGoogle ScholarPubMed
Engberg, J., Nielsen, H., Lenaers, G., Murayama, O., Fujitani, H. & Higashi-Nakagawa, T. (1990) Comparison of primary and secondary 26S rRNA structures in two Tetrahymena species: evidence for a strong evolutionary and structural constraint in expansion segments. Journal of Molecular Evolution, 30, 514521.CrossRefGoogle Scholar
Field, K. G., Olsen, G. J., Lane, D. J., Giovannoni, S. J., Ghiselin, M. T., Raff, E. C., Pace, N. R. & Raff, R. A. (1988) Molecular phylogeny of the animal kingdom. Science, 239, 748753.CrossRefGoogle ScholarPubMed
Fujiwara, H. & Ishikawa, H. (1986) Molecular mechanism of introduction of the hidden break into the 28S rRNA of insects: implication based on structural studies. Nucleic Acids Research, 14, 63936401.CrossRefGoogle ScholarPubMed
Ishikawa, H. (1977a) Comparative studies on the thermal stability of animal ribosomal RNA's–IV. Thermal stability and molecular integrity of ribosomal RNA's from several Protostomes (rotifers, round-worms, liver-flukes, and brine-shrimps). Comparative Biochemistry and Physiology, 56B, 229234.Google Scholar
Ishikawa, H. (1977b) Evolution of ribosomal RNA. Comparative Biochemistry and Physiology, 58B, 17.Google Scholar
Khandjian, E. W. & Méric, C. (1986) A procedure for Northern blot analysis of native RNA. Analytical Biochemistry, 159, 227232.CrossRefGoogle ScholarPubMed
McManus, D. P., Knight, M. & Simpson, A. J. G. (1985) Isolation and characterisation of nucleic acids from the hydatid organisms, Echinococcus spp. (Cestoda). Molecular and Biochemical Parasitology, 16, 251266.CrossRefGoogle ScholarPubMed
Mertz, P. M., Bobek, L. A., Rekosh, D. M. & LoVerde, P. T. (1991) Schistosoma haematobium and S. japonicum: Analysis of the ribosomal RNA genes and determination of the “gap” boundaries and sequences. Experimental Parasitology, 73, 137149.CrossRefGoogle ScholarPubMed
Raué, H. A., Klootwijk, J. & Musters, W. (1988) Evolutionary conservation of structure and function of high molecular weight ribosomal RNA. Progress in Biophysics and Molecular Biology, 51, 77129.CrossRefGoogle ScholarPubMed
Simpson, A. J. G., Dame, J. B., Lewis, F. A. & McCutchan, T. F. (1984) The arrangement of ribosomal RNA genes in Schistosoma mansoni. Identification of polymorphic structural variants. European Journal of Biochemistry, 139, 4145.CrossRefGoogle ScholarPubMed
Tenniswood, M. P. R. & Simpson, A. J. G. (1982) The extraction, characterization and in vitro translation of RNA from adult Schistosoma mansoni. Parasitology, 84, 253261.CrossRefGoogle ScholarPubMed
van Keulen, H., Mertz, P. M., LoVerde, P. T., Shi, H. & Rekosh, D. M. (1991) Characterization of a 54-nucleotide gap region in the 28S rRNA gene of Schistosoma mansoni. Molecular and Biochemical Parasitology, 45, 205214.CrossRefGoogle ScholarPubMed
Ware, V. C., Renkawitz, R. & Gerbi, S. A. (1985) rRNA processing: removal of only nineteen bases at the gap between 28Sα and 28Sβ rRNAs in Sciara coprophila. Nucleic Acids Research, 13, 35813597.CrossRefGoogle Scholar