Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T05:04:40.342Z Has data issue: false hasContentIssue false

The Hydrobia ulvaeMaritrema subdolum association: influence of temperature, salinity, light, water-pressure and secondary host exudates on cercarial emergence and longevity

Published online by Cambridge University Press:  12 April 2024

K.N. Mouritsen*
Affiliation:
Department of Marine Ecology, Institute of Biological Sciences, University of Aarhus, Finlandsgade 14, 8200 Aarhus, N, Denmark
*
*Address for correspondence: Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand Fax: + 64 3 479 7584 E-mail: kim.mouritsen@stonebow.otago.ac.nz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of environmental factors and exudates from the amphipod Corophium volutator on the emergence of Maritrema subdolum cercariae (Digenea: Microphallidae) from the snail Hydrobia ulvae were investigated in the laboratory. Increasing the temperature (15 to 25°C) caused an overall 11-fold increase in emergence rate under varying salinities (24 to 36‰). The effect of salinity depended on the experimental temperature. Emergence increased with increasing salinity at higher temperatures, but decreased with increasing salinity at 15°C.Whereas the different levels of salinity had no effect, increasing the temperature significantly reduced the life span of cercariae. In comparison with complete darkness, light caused a two-fold increase in emergence, whereas an increment of the water pressure from 1.0 to 1.3 ATM (corresponding to 0 and 3 m of depth) left the shedding rate unaffected. Unidentified exudates from the second intermediate host, C. volutator, significantly depressed the cercarial emergence rate. The main transmission window of M. subdolum seems to occur during low water in tidal pools where light levels are high and solar radiation rapidly elevates the water temperature, as well as salinity through evaporation. The consequence of such a transmission strategy is discussed in relation to the impact of M. subdolum on the population dynamics of the second intermediate host.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2002

References

Anderson, R.M. & Gordon, D.M. (1982) Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortality. Parasitology 85, 373398.CrossRefGoogle Scholar
Ataev, G.L. (1991) Temperature influence on the development and biology of redia and cercariae of Philophthalmus rhionica (Trematoda). Parazitologiya 25, 349359 (in Russian).Google Scholar
Bush, O.B., Fernández, J.C., Esch, G.W. & Seed, J.R. (2001) Parasitism. The diversity and ecology of animal parasites. Cambridge, Cambridge University Press.Google Scholar
Coles, G.C. (1973) The effect of diet and crowding on the shedding of Schistosoma mansoni cercariae by Biomphalaria glabrata . Annals of Tropical Medicine and Parasitology 67, 419423.CrossRefGoogle Scholar
Combes, C., Fournier, A., Moné, H. & Théron, A. (1994) Behaviours in trematode cercariae that enhance parasite transmission: patterns and processes. Parasitology 109, S3S13.CrossRefGoogle ScholarPubMed
Côté, I.M. (1995) Effects of predatory crab effluent on byssus production in mussels. Journal of Experimental Marine Biology and Ecology 188, 233241.CrossRefGoogle Scholar
Craig, L.H. (1975) Himasthla quissentensis and Lepocreadium setiferoides: emergence patterns from their molluscan host, Nassarius obsoletus. Experimental Parasitology 38, 5663.CrossRefGoogle Scholar
Deblock, S. (1980) Inventaire des trématodes larvaires parasites des mollusques Hydrobia (Prosobranches) des côtes de France. Parassitologia 22, 1105.Google Scholar
Erasmus, D.A. (1972) The biology of trematodes. Belfast, The University Press.Google Scholar
Evans, N.A. (1985) The influence of environmental temperature upon transmission of the cercariae of Echinostoma liei (Digenea: Echinostomatidae). Parasitology 90, 269275.CrossRefGoogle Scholar
Ferrer, J.R., Pointier, J.-P., Théron, A. & Moné, H. (1991) Influence of the nontarget mollusc Marisa cornuarietis onthehourlycercarial production of Schistosoma mansoni from Biomphalaria glabrata . Journal of Parasitology 77, 798800.CrossRefGoogle ScholarPubMed
Ginetsinskaya, T.A. (1988) Trematodes, their life cycles, biology and evolution. New Delhi, Amerind Publishing Co. Pvt. Ltd.Google Scholar
Haas, W., Haberl, B., Kalbe, M. & Körner, M. (1995) Snail-host-finding by miracidia and cercariae: chemical host cues. Parasitology Today 11, 468472.CrossRefGoogle Scholar
James, B.L. (1971) Host selection and ecology of marine digenean larvae. pp. 179196 in Crisp, D.J. (Ed.) Fourth European marine biology symposium. Cambridge, Cambridge University Press.Google Scholar
Jensen, K.T. & Mouritsen, K.N. (1992) Mass mortality in two common soft-bottom invertebrates, Hydrobia ulvae and Corophium volutator – the possible role of trematodes. Helgoländer Meeresuntersuchungen 46, 329339.CrossRefGoogle Scholar
Kuntz, R.E. (1947) Effect of light and temperature on emergence of Schistosoma mansoni cercariae. Transactions of the American Microscopical Society 66, 3749.CrossRefGoogle ScholarPubMed
Lauckner, G. (1987a) Effects of parasites on juvenile Wadden Sea invertebrates. pp. 103121 in Tougaard, S. & Asbirk, S. (Eds) Proceedings of the 5th international Wadden Sea symposium. Esbjerg, The National Forest and Nature Agency and Museum of Fisheries and Shipping.Google Scholar
Lauckner, G. (1987b) Ecological effects of larval trematode infections on littoral marine invertebrate populations. International Journal for Parasitology 17, 391398.CrossRefGoogle Scholar
Lawson, J.R. & Wilson, R.A. (1980) The survival of the cercariae of Schistosoma mansoni in relation to water temperature and glycogen utilization. Parasitology 81, 337348.CrossRefGoogle ScholarPubMed
Lo, C.-T. & Lee, K.-M. (1996) Pattern of emergence and the effects of temperature and light on the emergence and survival of heterophyid cercariae (Centrocestus formosanus and Haplorchis pumilio). Journal of Parasitology 82, 347350.CrossRefGoogle ScholarPubMed
Lowenberger, C.A. & Rau, M.E. (1994) Plagiorchis elegans: emergence, longevity and infectivity of cercariae, and host behavioural modifications during cercarial emergence. Parasitology 109, 6572.CrossRefGoogle ScholarPubMed
McCarthy, A.M. (1999) The influence of temperature on the survival and infectivity of the cercariae Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 118, 383388.CrossRefGoogle ScholarPubMed
Meadows, P.S. & Ruagh, A.A. (1981a) Multifactorial analysis of behavioural responses of the amphipod Corophium volutator to temperature-salinity combinations. Marine Ecology Progress Series 6, 183190.CrossRefGoogle Scholar
Meadows, P.S. & Ruagh, A.A. (1981b) Temperature preference and activity of Corophium volutator (Pallas) in a new choice apparatus. Sarsia 66, 6772.CrossRefGoogle Scholar
Meissner, K. & Bick, A. (1997) Population dynamics and ecoparasitological surveys of Corophium volutator in coastal waters in the Bay of Mecklenburg (southern Baltic Sea). Diseases of Aquatic Organisms 29, 169179.CrossRefGoogle Scholar
Meissner, K. & Bick, A. (1999a) Mortality of Corophium volutator (Amphipoda) caused by infestation with Maritrema subdolum (Digenea, Microphallidae) – laboratory studies. Diseases of Aquatic Organisms 35, 4752.CrossRefGoogle Scholar
Meissner, K. & Bick, A. (1999b) Laboratory studies of parasite transmission aspects between Hydrobia spp. (Gastropoda) and Corophium volutator (Amphipoda). International Review of Hydrobiology 84, 6172.CrossRefGoogle Scholar
Moné, H. (1991) Influence of non-target molluscs on the growth of Biomphalaria glabrata infected with Schistosoma mansoni: correlations between growth and cercarial production. Journal of Molluscan Studies 57, 110.CrossRefGoogle Scholar
Mouahid, A., Bouhaddioui, N., Jana, M., Combes, C. & Moné, H. (1992) Effect of different mollusc associations on target mollusc growth and parasite cercarial production in the triple system: Bulinus wrighti-Schistosoma bovis and Melanopsis praemorsa . Journal of Molluscan Studies 58, 349355.CrossRefGoogle Scholar
Mouritsen, K.N. (2002) The Hydrobia ulvae–Maritrema subdolum association: cercarial emergence controlled by host activity. Journal of Helminthology 76, 349353.CrossRefGoogle ScholarPubMed
Mouritsen, K.N. & Jensen, K.T. (1997) Parasite transmission between soft-bottom invertebrates: temperature mediated infection rates and mortality in Corophium volutator . Marine Ecology Progress Series 151, 123134.CrossRefGoogle Scholar
Mouritsen, K.N., Jensen, T. & Jensen, K.T. (1997) Parasites on an intertidal Corophium-bed: factors determining the phenology of microphallid trematodes in the intermediate host populations of the mud-snail Hydrobia ulvae and the amphipod Corophium volutator . Hydrobiologia 355, 6170.CrossRefGoogle Scholar
Pechenik, J.A. & Fried, B. (1995) Effect of temperature on survival and infectivity of Echinostoma trivolis cercariae: a test of the energy limitation hypothesis. Parasitology 111, 373378.CrossRefGoogle Scholar
Prokofiev, V.V. (1999) Influence of temperature and salinity on a life span of cercariae of littoral trematodes Cryptocotyle sp. (Heterophyidae), Levinseniella brachysoma and Maritrema subdolum (Microphallidae). Parazitologiya 33, 520525 (in Russian).Google Scholar
Rea, J.G. & Irwin, S.W.B. (1992) The effects of age, temperature, light quantity and wavelength on the swimming behaviour of the cercariae of Cryptocotyle lingua (Digenea: Heterophyidae). Parasitology 105, 131137.CrossRefGoogle ScholarPubMed
Rees, G. (1948) A study of the effect of light, temperature and salinity on the emergence of Cercaria purpurae Lebour from Nucella lapillus (L.). Parasitology 38, 228242.CrossRefGoogle ScholarPubMed
Rojo-Vázquez, F.A. & Simón-Martín, F. (1985) Algunos aspectos de la biologia de las cercarias de Trichobilharzia sp. del Rio Cañedo (provincia de Salamanca, España). Revista Ibérica de Parasitologia 45, 141148.Google Scholar
Shostak, A.W. (1993) Survival of Petasiger nitidus (Digenea: Echinostomatidae) cercariae in relation to temperature, pH, and salinity. Canadian Journal of Zoology 71, 431434.CrossRefGoogle Scholar
Shostak, A.W. & Esch, G.W. (1990) Photocycle-dependent emergence by cercariae of Halipegus occidualis from Helisoma anceps, with special reference to cercarial emergence patterns as adaptations for transmission. Journal of Parasitology 76, 190195.CrossRefGoogle Scholar
Sindermann, C.J. (1960) Ecological studies of marine dermatitis-producing schistosome larvae in northern New England. Ecology 41, 678684.CrossRefGoogle Scholar
Sindermann, C.J. & Farrin, A.E. (1962) Ecological studies of Cryptocotyle lingua (Trematoda: Heterophyidae) whose larvae cause [pigment spots] of marine fish. Ecology 43, 6975.CrossRefGoogle Scholar
Stunkard, H.W. & Shaw, C.R. (1931) The effect of dilution of sea water on the activity and longevity of certain marine cercariae, with descriptions of two new species. Biological Bulletin, Woods Hole 61, 242271.CrossRefGoogle Scholar
Umadevi, K. & Madhavi, R. (1997) Effects of light and temperature on the emergence of Haplorchis pumilio cercariae from the snail host Thiara tuberculata . Acta Parasitologica 42, 1216.Google Scholar