Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T02:22:18.426Z Has data issue: false hasContentIssue false

In vitro nematicidal activity of two ferrocenyl chalcones against larvae of Haemonchus contortus (L3) and Nacobbus aberrans (J2)

Published online by Cambridge University Press:  11 September 2020

J. Vázquez-Bravo
Affiliation:
Colaborador del Laboratorio de Nuevos Materiales de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia Jardínes de San Manuel, CP 72570, Puebla, Puebla, Mexico
L. Aguilar-Marcelino*
Affiliation:
Laboratorio de Helmintología, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, Carretera Federal Cuernavaca-Cuautla no. 8534, Colonia Progreso, CP 62550, Jiutepec, Morelos, Mexico
G.S. Castañeda-Ramírez
Affiliation:
Laboratorio de Helmintología, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, Carretera Federal Cuernavaca-Cuautla no. 8534, Colonia Progreso, CP 62550, Jiutepec, Morelos, Mexico
I. De los Santos-Pérez
Affiliation:
Colaborador del Laboratorio de Nuevos Materiales de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia Jardínes de San Manuel, CP 72570, Puebla, Puebla, Mexico
R.E. Arroyo-Carmona
Affiliation:
Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia Jardínes de San Manuel, CP 72570, Puebla, Puebla, Mexico
S. Bernès
Affiliation:
Instituto de Física, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia Jardínes de San Manuel, CP 72570, Puebla, Puebla, Mexico
U. Hernández-Pareja
Affiliation:
Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edificio IC8 Complejo de Ciencias, Avenida San Claudio y 18 Sur, Colonia Jardínes de San Manuel, CP 72570, Puebla, Puebla, Mexico
O. Gómez-Rodríguez
Affiliation:
Colegio de Postgraduados, Carretera México-Texcoco, Km 36.5, Montecillo, Texcoco, Estado de México, Mexico
G.H. Rosas-Saito
Affiliation:
INECOL, AC, Red de Estudios Moleculares Avanzados, Unidad de Microscopía Avanzada del Clúster Científico y Tecnológico BioMimic, Carretera Antigua a Coatepec no. 351, Colonia El Haya, CP 91070, Xalapa, Veracruz, Mexico
*
Author for correspondence: L. Aguilar-Marcelino, E-mail: aguilar.liliana@inifap.gob.mx

Abstract

The main goal of this work was to evaluate the in vitro biological activity of two ferrocenyl chalcones (FcC-1 and FcC-2) against Haemonchus contortus (third-stage larvae (L3)) and Nacobbus aberrans (second-stage juveniles (J2)). Both compounds were synthesized and characterized by usual spectroscopic methods and their molecular structures were confirmed by single-crystal X-ray diffractometry. Nematode strains were examined in terms of percentage mortality of H. contortus (L3) by the action of FcC-1, which showed an effectivity of 100% at a concentration of 342 μM in 24 h, with EC50 = 20.33 μM and EC90 = 162.76 μM, whereas FcC-2 had an effectivity of 72% at a concentration of 342 μM in 24 h, with EC50 = 167.39 μM and EC90 = 316.21 μM. The effect of FcC-1 against nematode phytoparasite N. aberrans showed a better percentage of 95% at a concentration of 342 μM, with EC50 = 7.18 μM and EC90 = 79.25 μM, whereas the effect of FcC-2 was 87% at 342 μM, with EC50 = 168 μM and EC90 = 319.56 μM at 36 h. After treatment, the scanning electron micrographs revealed deformities in the dorsal flank and posterior part close to the tail of H. contortus L3. They showed moderate in vitro nematicidal activity against H. contortus L3 and N. aberrans J2.

Type
Research Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amarante, AFT, Susin, I, Rocha, RA, Silva, MB, Mendes, CQ and Pires, AV (2009) Resistance of Santa Ines and crossbred ewes to naturally acquired gastrointestinal nematode infections. Veterinary Parasitology 165, 273280.CrossRefGoogle Scholar
Attar, S, O'Brien, Z, Alhaddad, H, Golden, ML and Calderón-Urrea, A (2011) Ferrocenyl chalcones versus organic chalcones: a comparative study of their nematocidal activity. Bioorganic & Medicinal Chemistry 19, 20552073.CrossRefGoogle ScholarPubMed
Baermann, G (1917) Eine einfache Methode zur Auffindung von Ankylostomum -(Nematoden)- Larven in Erdproben. Welteureden. Batavia, Genesk. Lab. Feestbundel, pp. 4147.Google Scholar
Biot, C, Glorian, G, Maciejewski, LA and Brocard, J (1997) Synthesis and antimalarial activity in vitro and in vivo of a new ferrocene–chloroquine analogue. Journal of Medicinal Chemistry 40, 37153718.CrossRefGoogle ScholarPubMed
Caboni, Pierluigi, Aissani, Nadhem, Demurtas, Monica, Ntalli, Nikoletta and Onnis, Valentina (2016) Nematicidal activity of acetophenones and chalcones against Meloidogyne incognita and structure-activity considerations. Pest Management Science 72(1), 125130. http://dx.doi.org/10.1002/ps.3978.CrossRefGoogle ScholarPubMed
Cristóbal-Alejo, J, Mora-Aguilera, G, Manzanilla-López, RH, Marbán-Méndoza, N, Sánchez-Garcia, P, Cid Del Prado-Vera, I and Evans, K (2006) Epidemiology and integrated control of Nacobbus aberrans on tomato in Mexico. Nematology 8, 727737.CrossRefGoogle Scholar
Dombrowski, KE, Baldwin, W and Sheats, JE (1986) Metallocenes in biochemistry, microbiology & medicine. Journal of Organometallic Chemistry 302, 281306.CrossRefGoogle Scholar
EPPO (2009) Nacobbus aberrans sensu lato. EPPO Bulletin 39, 376381.CrossRefGoogle Scholar
Fouda, MFR, Abd-Elzaher, MM, Abdelsamaia, RA and Labib, AA (2007) On the medicinal chemistry of ferrocene. Applied Organometallic Chemistry 21, 613625.CrossRefGoogle Scholar
Henry, EJ, Bird, SJ, Gowland, P, Collins, M and Cassella, JP (2020) Ferrocenyl chalcone derivatives as possible antimicrobial agents. The Journal of Antibiotics 73, 299308.CrossRefGoogle ScholarPubMed
Holmes, PH (1987) Pathophysiology of nematode infections. International Journal for Parasitology 17, 443451.CrossRefGoogle ScholarPubMed
Hosking, B, Griffiths, T, Woodgate, R, et al. (2009) Clinical field study to evaluate the efficacy and safety of the amino-acetonitrile derivative, monepantel, compared with registered anthelmintics against gastrointestinal nematodes of sheep in Australia. Australian Veterinary Journal 87, 455462.CrossRefGoogle ScholarPubMed
Jones, JT, Haegeman, A, Danchin, EGJ, et al. (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14, 946961.CrossRefGoogle ScholarPubMed
Kealy, TJ and Pauson, PL (1951) A new type of organo-iron compound. Nature 168, 10391040.CrossRefGoogle Scholar
Lahtchev, KL, Batovska, DI, Parushev, SP, Ubiyvovk, VM and Sibirny, AA (2008) Antifungal activity of chalcones: a mechanistic study using various yeast strains. European Journal of Medicinal Chemistry 43, 22202228.CrossRefGoogle ScholarPubMed
Liébano-Hernández, E, López-Arellano, ME, Mendoza de-Gives, P and Aguilar-Marcelino, L (2011) Manual de Diagnóstico para la identificación de larvas de nematodos gastrointestinales en rumiantes. Manual Especial (2), 148. Ciudad de Jiutepec, Morelos, México, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria del Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias.Google Scholar
Liu, M, Wilairat, P and Go, ML (2001) Antimalarial alkoxylated and hydroxylated chalcones: structure-activity relationship analysis. Journal of Medicinal Chemistry 44, 44434452.CrossRefGoogle ScholarPubMed
Marais, JPJ, Deavours, B, Dixon, RA and Ferreira, D (2006) The stereochemistry of flavonoids. The Science of Flavonoids, 146.Google Scholar
Miller, CM, Waghorn, TS, Leathwick, DM, Candy, PM, Oliver, AMB and Watson, TG (2012) The production cost of anthelmintic resistance in lambs. Veterinary Parasitology 186, 376381.CrossRefGoogle ScholarPubMed
Modzelewska, A, Pettit, C, Achanta, G, Davidson, NE, Huang, P and Khan, SR (2006) Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorganic & Medicinal Chemistry 14, 34913495.CrossRefGoogle ScholarPubMed
Mugniéry, D and Phillips, MS (2007) The nematode parasites of potato. pp. 569594in Vreugdenhil, D (Ed) Potato biology and biotechnology: advances and perspectives. Netherlands, Elsevier, Amsterdam.CrossRefGoogle Scholar
Nielsen, SF, Kharazmi, A and Christensen, SB (1998) Modifications of the α,β-double bond in chalcones only marginally effect the antiprotozoal activities. Bioorganic & Medicinal Chemistry 6, 937945.CrossRefGoogle Scholar
Nielsen, SF, Boesen, T, Larsen, M, Schønning, K and Kromann, H (2004) Antibacterial chalcones–bioisosteric replacement of the 4´-hydroxy group. Bioorganic & Medicinal Chemistry 12, 30473054.CrossRefGoogle ScholarPubMed
Nowakowska, Z (2005) Structural assignment of stilbenethiols and chalconethiols and differentiation of their isomeric derivatives by means of 1H and 13CNMR spectroscopy. Spectroscopy Letters 38, 477485.CrossRefGoogle Scholar
Olmedo-Juárez, A, Rojo-Rubio, R, Zamilpa, A, Mendoza de Gives, P, Arece-García, J, López-Arellano, ME and von Son-de Fernex, E (2017) In vitro larvicidal effect of a hydroalcoholic extract from Acacia cochliacantha leaf against ruminant parasitic nematodes. Veterinary research communications 41, 227232.CrossRefGoogle ScholarPubMed
Ouattara, M, Sissouma, D, Koné, MW, Menan, HE, Touré, SA and Ouattara, L (2011) Synthesis and anthelmintic activity of some hybrid Benzimidazolyl-chalcone derivatives. Tropical Journal of Pharmaceutical Research 10, 767775.CrossRefGoogle Scholar
Park, JY, Jeong, HJ, Kim, YM, Park, SJ, Rho, MC, Park, KH, Ryu, YB and Lee, WS (2011) Characteristic of the alkylated chalcones from Angelica keiskei on influenza virus neuraminidase inhibition. Bioorganic & Medicinal Chemistry Letters 21, 56025604.CrossRefGoogle ScholarPubMed
Pineda-Alegría, JA, Sánchez-Vázquez, JE, González-Cortazar, M, Zamilpa, A, López-Arellano, ME, Cuevas-Padilla, EJ, Mendoza-de-Gives, P and Aguilar-Marcelino, L (2017) The Edible Mushroom Pleurotus djamor Produces Metabolites with Lethal Activity Against the Parasitic Nematode Haemonchus contortus. Journal of Medicinal Food 20, 11841192.CrossRefGoogle ScholarPubMed
SAS 9.2 (2009) Statistical analysis system. Cary, NC, SAS Institute Inc.Google Scholar
Sher, SA (1970) Revision of the genus Nacobbus Thorne & Allen, 1944 (Nematoda: Tylenchida). Journal of Nematology 2, 228235.Google Scholar
Sissouma, D, Ouattara, M, Koné, MW, Menan, HE, Adjou, A and Ouattara, L (2011) Synthesis and in vitro nematicidal activity of new chalcones vectorised by imidazopyridine. African Journal of Pharmacy and Pharmacology 5, 20862093.Google Scholar
Sivakumar, PM, Geetha Babu, SK and Mukesh, D (2007) QSAR studies on chalcones and flavonoids as anti-tuberculosis agents using Genetic Function Approximation (GFA) method. Chemical and Pharmaceutical Bulletin 55, 4449.CrossRefGoogle ScholarPubMed
Thorne, GD and Allen, MW (1944) Nacobbus dorsalis, nov. gen. nov. spec. (Nematoda: Tylenchidae) producing galls on the roots of alfileria, Erodium cicutarium (L.) L'Her. . Proceedings of the Helminthological Society of Washington 11, 2731.Google Scholar
Top, S, Tang, J, Vessieres, A, Carrez, C, Provot, C and Jaouen, G (1996) Ferrocenyl hydroxytamoxifen: a prototype for a new range of oestradiol receptor site-directed cytotoxics. Chemical Communications 8, 955956.CrossRefGoogle Scholar
van Staveren, DR and Metzler-Nolte, N (2004) Bioorganometallic chemistry of ferrocene. Chemical Reviews 104, 59315985.CrossRefGoogle ScholarPubMed
Vrain, TC (1977) A technique for the collection of larvae of Meloidogyne spp. and a comparison of eggs and larvae as inocula. Journal Nematology 9, 249251.Google Scholar
Woodward, RB, Rosenblum, M and Whiting, MC (1952) A new aromatic system. Journal of the American Chemical Society 74, 34583459.CrossRefGoogle Scholar
Wu, X, Wilairat, P and Go, ML (2002) Antimalarial activity of ferrocenyl chalcones. Bioorganic & Medical Chemistry Letters 12, 22992302.CrossRefGoogle ScholarPubMed
Wu, X, Tiekink, ERT, Kostetski, I, Kocherginsky, N, Tan, ALC, Khoo, SB, Wilairat, P and Go, ML (2006) Antiplasmodial activity of ferrocenyl chalcones: investigations into the role of ferrocene. European Journal of Pharmaceutical Sciences 27, 175187.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Vázquez-Bravo et al. Supplementary Materials

Vázquez-Bravo et al. Supplementary Materials

Download Vázquez-Bravo et al. Supplementary Materials(PDF)
PDF 766.3 KB