Hostname: page-component-6bf8c574d5-mggfc Total loading time: 0 Render date: 2025-02-26T14:54:05.030Z Has data issue: false hasContentIssue false

Is parasitic infection a buffer against metal pollution?

Published online by Cambridge University Press:  26 February 2025

N.V. Leiva*
Affiliation:
Programa Doctorado en Ciencias Aplicadas Mención Sistemas Acuáticos, Universidad de Antofagasta, Antofagasta, Chile Instituto de Ciencias Naturales ‘Alexander von Humboldt’, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
D. Montenegro
Affiliation:
Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
C. Castro
Affiliation:
Instituto de Ciencias Naturales ‘Alexander von Humboldt’, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
M. Silva
Affiliation:
Instituto de Ciencias Naturales ‘Alexander von Humboldt’, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
R. Vidal
Affiliation:
Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
M.T. González*
Affiliation:
Instituto de Ciencias Naturales ‘Alexander von Humboldt’, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
*
Corresponding authors: M.T. González and N.V. Leiva; Emails: teresa.gonzalez@uantof.cl; natalia.leiva@uantof.cl
Corresponding authors: M.T. González and N.V. Leiva; Emails: teresa.gonzalez@uantof.cl; natalia.leiva@uantof.cl

Abstract

Metal pollution is a major global issue in aquatic environments, affecting environmental quality and potentially altering host–parasite dynamics. This study evaluates the buffering role of a larval trematode Himasthla sp. under experimental conditions to test the effect of copper (Cu) exposure on the survival of the marine snail Echinolittorina peruviana. Snails were collected from intertidal rocky pools over a two-month period from Coloso (23°45’S, 70°28’W), northern Chile, and identified as parasitized or unparasitized. Both groups were then exposed to Cu concentrations (3 and 6 mg/L). Kaplan–Meier curves were used to determine the percentage of survival over time and the respective confidence intervals (CI). A nested ANOVA was conducted to assess whether rediae abundance per snail varied by experiment time, snail status, and Cu concentration. Snail survival was affected by both Cu-concentrations, but the effect was greater at 6 mg/L. At 3 mg/L, 57% (CI: 49.9–66.6%) of unparasitized snails were alive at 192 h, while 56% (CI: 46.6–67.4%) of parasitized snails survived at 216 h. At 6 mg/L, 42% (CI:35-51%) of unparasitized snails survived at 192 h, while 48% of parasitized snails survived at 216 h (CI:39-59%). Regardless of Cu concentration, after 240 h, all unparasitized snails had died, while 15% of parasitized snails remained alive. Dead snails harboured 125±53 rediae, while survivors had 194±73 rediae, with no significant differences between treatments. Our results show that parasitized snails survived longer than unparasitized snails, suggesting a trade-off between parasitism and host survival in polluted environments.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baudrimont, M and De Montaudouin, X (2007) Evidence of an altered protective effect of metallothioneins after cadmium exposure in the digenean parasite-infected cockle (Cerastoderma edule). Parasitology 134(2), 237245. https://doi.org/10.1017/S0031182006001375.CrossRefGoogle ScholarPubMed
Bustamante-Penagos, N and Niño, Y (2020) Suspension and infiltration of copper concentrate in a gravel bed: A flume study to evaluate the fate of a potential spill in a Chilean river. Environmental Earth Sciences 79(24), 530. https://doi.org/10.1007/s12665-020-09274-y.CrossRefGoogle Scholar
Coors, A and De Meester, L (2008) Synergistic, antagonistic and additive effects of multiple stressors: Predation threat, parasitism and pesticide exposure in Daphnia magna. Journal of Applied Ecology 45(6), 18201828. https://doi.org/10.1111/j.1365-2664.2008.01566.x.CrossRefGoogle Scholar
Dairain, A, Legeay, A, Gernigon, V and De Montaudouin, X (2019) How does the bopyrid isopod Gyge branchialis interfere with trace metal bioaccumulation in the mud shrimp Upogebia cf. pusilla? Parasitology Research 118(1), 363367. https://doi.org/10.1007/s00436-018-6148-4.CrossRefGoogle ScholarPubMed
Di Cesare, A, Pjevac, P, Eckert, E, Curkov, N, Miko Šparica, M, Corno, G and Orlić, S (2020) The role of metal contamination in shaping microbial communities in heavily polluted marine sediments. Environmental Pollution 265, 114823. doi:10.1016/j.envpol.2020.114823.CrossRefGoogle ScholarPubMed
Doney, SC, Ruckelshaus, M, Emmett Duffy, J, Barry, JP, Chan, F, English, CA, Galindo, HM, Grebmeier, JM, Hollowed, AB, Knowlton, N, Polovina, J, Rabalais, NN, Sydeman, WJ and Talley, LD (2012) Climate change impacts on marine ecosystems. Annual Review of Marine Science 4(1), 1137. doi:10.1146/annurev-marine-041911-111611.CrossRefGoogle ScholarPubMed
Dunn, OJ (1961) Multiple comparisons among means. Journal of the American Statistical Association 56(293), 5264. doi:10.1080/01621459.1961.10482090.CrossRefGoogle Scholar
Evans, DW, Irwin, SWB and Fitzpatrick, S (2001) The effect of digenean (Platyhelminthes) infections on heavy metal concentrations in Littorina littorea. Journal of the Marine Biological Association of the United Kingdom 81(2), 349350. doi:10.1017/S0025315401003873.CrossRefGoogle Scholar
Fang, T, Yang, K, Lu, W, Cui, K, Li, J, Liang, Y, Hou, G, Zhao, X and Li, H (2019) An overview of heavy metal pollution in Chaohu Lake, China: Enrichment, distribution, speciation, and associated risk under natural and anthropogenic changes. Environmental Science and Pollution Research 26(29), 2958529596. doi:10.1007/s11356-019-06210-x.Google Scholar
Fellous, S and Salvaudon, L (2009) How can your parasites become your allies? Trends in Parasitology 25(2), 6266. doi:10.1016/j.pt.2008.11.010.CrossRefGoogle ScholarPubMed
Gambino, E, Chandrasekhar, K and Nastro, RA (2021) SMFC as a tool for the removal of hydrocarbons and metals in the marine environment: A concise research update. Environmental Science and Pollution Research 28(24), 3043630451. doi:10.1007/s11356-021-13593-3.CrossRefGoogle ScholarPubMed
Goutte, A and Molbert, N (2022) Benefits of parasitism in polluted environments: A review and perspectives. Frontiers in Ecology and Evolution 10, 847869. doi:10.3389/fevo.2022.847869.CrossRefGoogle Scholar
Guzmán, N, Saá, S and Ortlieb, L (1998) Catálogo descriptivo de los moluscos litorales (Gastropoda y Pelecypoda) de la zona de Antofagasta, 23°S (Chile). Estudios Oceanológicos 17, 1786.Google Scholar
Hassanine, RME (2006) The life cycle of Diploproctodaeum arothroni Bray and Nahhas, 1998 (Digenea: Lepocreadiidae), with a comment on the parasitic castration of its molluscan intermediate host. Journal of Natural History 40(19–20), 12111222. doi:10.1080/02678290600883767.CrossRefGoogle Scholar
Huffman, JE, Klockars, J, Keeler, SP and Fried, B (2009) Histopathological effects of the intramolluscan stages of Zygocotyle lunata, Echinostoma trivolvis, and Ribeiroia ondatrae on Helisoma trivolvis and observations on keratin in the trematode larvae. Parasitology Research 105(5), 13851389. https://doi.org/10.1007/s00436-009-1572-0.CrossRefGoogle ScholarPubMed
Hurd, H (2001) Host fecundity reduction: a strategy for damage limitation? Trends in Parasitology 17(8), 363368. doi:10.1016/S1471-4922(01)01927-4.CrossRefGoogle ScholarPubMed
Jomova, K and Valko, M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3), 6587. doi:10.1016/j.tox.2011.03.001.CrossRefGoogle ScholarPubMed
Kaplan, EL and Meier, P (1958) Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53(282), 457481. doi:10.1080/01621459.1958.10501452.CrossRefGoogle Scholar
Lafferty, K (1993) Effects of parasitic castration on growth reproduction and population dynamics of the marine snail Cerithidea californica. Marine Ecology Progress Series 96, 229237. doi:10.3354/meps096229.CrossRefGoogle Scholar
Lafferty, KD and Kuris, AM (1999) How environmental stress affects the impacts of parasites. Limnology and Oceanography 44(3part2), 925931. doi:10.4319/lo.1999.44.3_part_2.0925.CrossRefGoogle Scholar
Larsen, MH and Mouritsen, KN (2014) Temperature–parasitism synergy alters intertidal soft-bottom community structure. Journal of Experimental Marine Biology and Ecology 460, 109119. doi:10.1016/j.jembe.2014.06.011.CrossRefGoogle Scholar
Leiva, NV, Manríquez, PH, Aguilera, VM and González, MT (2019) Temperature and pCO2 jointly affect the emergence and survival of cercariae from a snail host: Implications for future parasitic infections in the Humboldt Current system. International Journal for Parasitology 49(1), 4961. doi:10.1016/j.ijpara.2018.08.006.CrossRefGoogle ScholarPubMed
Leiva, NV, Montenegro, D, Orrego, R, Vidal, R and González, MT (2024) Tolerance of free-living larval stage of a parasite from coastal mining areas in northern Humboldt Current to copper pollution at low and high temperatures. PLoS One 19(11), e0310473. https://doi.org/10.1371/journal.pone.0310473.CrossRefGoogle Scholar
Leung, TLF and Poulin, R (2008) Parasitism, commensalism, and mutualism: Exploring the many shades of symbioses. Vie et Milieu / Life & Environment 107.Google Scholar
Libman, MT (1991) The influence of larval trematode parasitism on the population and feeding ecology of the common mud snail, Ilyanassa obsoleta (Say). Available at https://www.proquest.com/openview/45b3a13d58b988c1e0ca4c75fdb9b5f9/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed 26 November 2024).Google Scholar
Liquin, F, Hünicken, LA, Arrighetti, F, Davies, D, Paolucci, EM and Sylvester, F (2021) Parasitism and fitness of invaders: Oligochaete Chaetogaster limnaei produces gill damage and increased respiration rates in freshwater Asian clams. Hydrobiologia 848(9), 22132223. https://doi.org/10.1007/s10750-020-04424-6.CrossRefGoogle Scholar
Long, SE and Martin, TD (1990) Method 200. 8 determination of trace elements in waters and wastes by inductively coupled plasma: Mass spectrometry. Revision 4. 3 (No. PB-93-157774/XAB). Environmental Protection Agency, Cincinnati, OH (United States). Environmental Monitoring Systems Lab. Retrieved from https://www.osti.gov/biblio/6681306.Google Scholar
MacLeod, CD and Poulin, R (2016) Parasitic infection: A buffer against ocean acidification? Biology Letters 12(5), 20160007. doi:10.1098/rsbl.2016.0007.CrossRefGoogle ScholarPubMed
Marambio-Alfaro, Y, Saavedra, JV, Enciso, , Marras, AL, Serrano, AE, Peláez, RM, Bruna, AC, Ávalos, and Maldonado, MV (2021) Microlophus atacamensis as a biomonitor of coastal contamination in the Atacama Desert, Chile: An evaluation through a non-lethal technique. Environmental Pollution 269, 115739. https://doi.org/10.1016/j.envpol.2020.115739.CrossRefGoogle ScholarPubMed
Marcogliese, DJ (2004) Parasites: Small players with crucial roles in the ecological theater. EcoHealth 1(2), 151164. doi:10.1007/s10393-004-0028-3.CrossRefGoogle Scholar
Martinez, LE, Gilardoni, C, Medina, CD, Cremonte, F and Etchegoin, JA (2024) Histopathological lesions caused by a digenean trematode in a pest apple snail, Pomacea canaliculata, in its native geographic distribution area. Animals 14(8), 1191. https://doi.org/10.3390/ani14081191.CrossRefGoogle Scholar
Matos, A and Antunes, A (2021) Symbiotic associations in ascidians: Relevance for functional innovation and bioactive potential. Marine Drugs 19(7), 370. doi:10.3390/md19070370.CrossRefGoogle ScholarPubMed
Meador, J, Casillas, E, Sloan, C and Varanasi, U (1995a) Comparative bioaccumulation of polycyclic aromatic hydrocarbons from sediment by two infaunal invertebrates. Marine Ecology Progress Series 123, 107124. doi:10.3354/meps123107.CrossRefGoogle Scholar
Meador, JP, Stein, JE, Reichert, WL and Varanasi, U (1995b) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. In Ware, GW (ed), Reviews of Environmental Contamination and Toxicology, vol. 143. New York: Springer New York, 79165. doi:10.1007/978-1-4612-2542-3_4.CrossRefGoogle Scholar
Montenegro, D, Valdés, J and González, MT (2019) Histopathological lesions, pathogens and parasites as health indicators of an edible clam (Protothaca thaca) inhabiting a bay exposed to anthropogenic activities in Northern Chile. Environmental Monitoring and Assessment 191(9), 536. doi:10.1007/s10661-019-7678-7.CrossRefGoogle ScholarPubMed
Moore, JW and Ramamoorthy, S (1984) Impact of heavy metals in natural waters. In Moore, JW and Ramamoorthy, S, Heavy Metals in Natural Waters. New York: Springer New York, 205233. doi:10.1007/978-1-4612-5210-8_10.CrossRefGoogle Scholar
Mori, T, Iwamoto, K, Wakaoji, S, Araie, H, Kohara, Y, Okamura, Y, Shiraiwa, Y and Takeyama, H (2016) Characterization of a novel gene involved in cadmium accumulation screened from sponge-associated bacterial metagenome. Gene 576(2), 618625. doi:10.1016/j.gene.2015.10.018.CrossRefGoogle ScholarPubMed
Mostafa, OMS, Mossa, A-TH and El Einin, HMA (2014) Heavy metal concentrations in the freshwater snail Biomphalaria alexandrina unparasitized or parasitized with cercariae of Schistosoma mansoni and/or Echinostoma liei in Egypt: The potential use of this snail as a bioindicator of pollution. Journal of Helminthology 88(4), 411416. doi:10.1017/S0022149X13000357.CrossRefGoogle ScholarPubMed
Mouritsen, KN and Poulin, R (2002) Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124(7), 101117. doi:10.1017/S0031182002001476.CrossRefGoogle ScholarPubMed
Mustafa, SK and AlSharif, MA (2018) Copper (Cu) an essential redox-active transition metal in living system—A review article. American Journal of Analytical Chemistry 09(01), 1526. doi:10.4236/ajac.2018.91002.CrossRefGoogle Scholar
Ong, JHL, Chejlava, M, Fried, B, Koehnlein, KM, Bosavage, GL and Sherma, J (2004) Effects of Schistosoma mansoni infection on inorganic elements in the snail Biomphalaria glabrata. Journal of Helminthology 78(4), 343346. doi:10.1079/JOH2004244.CrossRefGoogle ScholarPubMed
Poulin, R and Mouritsen, KN (2006) Climate change, parasitism and the structure of intertidal ecosystems. Journal of Helminthology 80(2), 183191. doi:10.1079/JOH2006341.CrossRefGoogle ScholarPubMed
Paul-Pont, I, De Montaudouin, X, Gonzalez, P, Jude, F, Raymond, N, Paillard, C and Baudrimont, M (2010a) Interactive effects of metal contamination and pathogenic organisms on the introduced marine bivalve Ruditapes philippinarum in European populations. Environmental Pollution 158(11), 34013410. https://doi.org/10.1016/j.envpol.2010.07.028.CrossRefGoogle ScholarPubMed
Paul-Pont, I, Gonzalez, P, Baudrimont, M, Jude, F, Raymond, N, Bourrasseau, L, Le Goïc, N, Haynes, F, Legeay, A, Paillard, C and De Montaudouin, X (2010b) Interactive effects of metal contamination and pathogenic organisms on the marine bivalve Cerastoderma edule. Marine Pollution Bulletin 60(4), 515525. https://doi.org/10.1016/j.marpolbul.2009.11.013.CrossRefGoogle ScholarPubMed
Roberts, LS, Janovy, J and Schmidt, GD (2000) Schmidt, Gerald D. & Roberts’, Larry S. Foundations of Parasitology, 6th edn. Boston: McGraw-Hill.Google Scholar
Romano, S (2018) Ecology and biotechnological potential of bacteria belonging to the genus Pseudovibrio. Applied and Environmental Microbiology 84(8), e0251617. doi:10.1128/AEM.02516-17.CrossRefGoogle Scholar
Selvin, J, Shanmugha Priya, S, Seghal Kiran, G, Thangavelu, T and Sapna Bai, N (2009) Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiological Research 164(3), 352363. doi:10.1016/j.micres.2007.05.005.CrossRefGoogle ScholarPubMed
Sun, Q, Li, Y, Shi, L, Hussain, R, Mehmood, K, Tang, Z and Zhang, H (2022) Heavy metals induced mitochondrial dysfunction in animals: Molecular mechanism of toxicity. Toxicology 469, 153136. doi:10.1016/j.tox.2022.153136.CrossRefGoogle ScholarPubMed
Sures, B (2006) How parasitism and pollution affect the physiological homeostasis of aquatic hosts. Journal of Helminthology 80(2), 151157. doi:10.1079/JOH2006346.CrossRefGoogle ScholarPubMed
Sures, B (2008a) Environmental parasitology: Interactions between parasites and pollutants in the aquatic environment. Parasite 15(3), 434438. doi:10.1051/parasite/2008153434.CrossRefGoogle ScholarPubMed
Sures, B (2008b) Host–parasite interactions in polluted environments. Journal of Fish Biology 73(9), 21332142. doi:10.1111/j.1095-8649.2008.02057.x.CrossRefGoogle Scholar
Sures, B, Dezfuli, BS and Krug, HF (2003) The intestinal parasite Pomphor hynchus laevis (Acanthocephala) interferes with the uptake and accumulation of lead (210Pb) in its fish host chub (Leuciscus cephalus). International Journal for Parasitology 33(14), 16171622. doi:10.1016/S0020-7519(03)00251-0.CrossRefGoogle ScholarPubMed
Sures, B, Siddall, R and Taraschewski, H (1999) Parasites as accumulation indicators of heavy metal pollution. Parasitology Today 15(1), 1621. doi:10.1016/S0169-4758(98)01358-1.CrossRefGoogle ScholarPubMed
Szopieray, K and Żbikowska, E (2021) Positive ecological roles of parasites. Acta Zoologica Academiae Scientiarum Hungaricae 67(3), 289300. doi:10.17109/AZH.67.3.289.2021.CrossRefGoogle Scholar
Thomas, F, Adamo, S and Moore, J (2005) Parasitic manipulation: Where are we and where should we go? Behavioural Processes 68(3), 185199. doi:10.1016/j.beproc.2004.06.010.CrossRefGoogle ScholarPubMed
Tunholi, VM, Tunholi-Alves, VM, Santos, AT, Garcia, JDS, Maldonado, A, da-Silva, WS, Rodrigues, MDLDA and Pinheiro, J (2016) Evaluation of the mitochondrial system in the gonad-digestive gland complex of Biomphalaria glabrata (Mollusca, Gastropoda) after infection by Echinostoma paraensei (Trematoda, Echinostomatidae). Journal of Invertebrate Pathology 136, 136141. https://doi.org/10.1016/j.jip.2016.04.003.CrossRefGoogle ScholarPubMed
Valdés, J, Román, D, Guiñez, M, Rivera, L, Ávila, J, Cortés, P and Castillo, A (2015) Trace metal variability in coastal waters of San Jorge Bay, Antofagasta, Chile: An environmental evaluation and statistical approach to propose local background levels. Marine Pollution Bulletin 100(1), 544554. doi:10.1016/j.marpolbul.2015.08.035.CrossRefGoogle Scholar
Valdés, J, Román, D, Rivera, L, Ávila, J and Cortés, P (2011) Metal contents in coastal waters of San Jorge Bay, Antofagasta, northern Chile: A base line for establishing seawater quality guidelines. Environmental Monitoring and Assessment 183(1–4), 231242. doi:10.1007/s10661-011-1917-x.CrossRefGoogle Scholar
Valdés, J and Tapia, JS (2019) Spatial monitoring of metals and As in coastal sediments of northern Chile: An evaluation of background values for the analysis of local environmental conditions. Marine Pollution Bulletin 145, 624640. doi:10.1016/j.marpolbul.2019.06.036.CrossRefGoogle ScholarPubMed
Valenzuela-Fuentes, K, Alarcón-Barrueto, E and Torres-Salinas, R (2021) From Resistance to Creation: Socio-Environmental Activism in Chile’s “Sacrifice Zones”. Sustainability 13(6), 3481. https://doi.org/10.3390/su13063481.CrossRefGoogle Scholar
Wood, CL, Byers, JE, Cottingham, KL, Altman, I, Donahue, MJ and Blakeslee, AMH (2007) Parasites alter community structure. Proceedings of the National Academy of Sciences 104(22), 93359339. doi:10.1073/pnas.0700062104.CrossRefGoogle ScholarPubMed
Venables, WN, and Ripley, BD ( 2002) Generalized linear models. In Venables, WN and Ripley, BD (eds), Modern Applied Statistics with S. New York: Springer, 183210.CrossRefGoogle Scholar
Zanetta-Colombo, NC, Fleming, ZL, Gayo, EM, Manzano, CA, Panagi, M, Valdés, J and Siegmund, A (2022) Impact of mining on the metal content of dust in indigenous villages of northern Chile. Environment International 169, 107490. https://doi.org/10.1016/j.envint.2022.107490.CrossRefGoogle ScholarPubMed
Zischke, DP (1972) the effects of Echinostoma revolutum larval infection on the histology, growth and fecundity of the snail, Stagnicola palustris. Available at https://www.proquest.com/openview/62fd4881f019080d624f02e2b21df321/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed 26 November 2024)Google Scholar
Supplementary material: File

Leiva et al. supplementary material

Leiva et al. supplementary material
Download Leiva et al. supplementary material(File)
File 20.6 KB