Hostname: page-component-6bf8c574d5-l72pf Total loading time: 0 Render date: 2025-03-09T02:42:21.279Z Has data issue: false hasContentIssue false

Molecular characterization and prevalence assessment of Durettenema sp. (Nematoda: Trichostrongyloidea) in the great leaf-nosed bats (Hipposideros armiger) in South China

Published online by Cambridge University Press:  06 March 2025

Y. Hu
Affiliation:
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
Y. Gan
Affiliation:
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
Y. Chen
Affiliation:
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
H. Wang
Affiliation:
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
X. Cui
Affiliation:
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
Y. Shen
Affiliation:
School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
X. Shen*
Affiliation:
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
*
Corresponding author: X. Shen; Email: xjshen@163.com

Abstract

The viruses associated with bats have generated significant concern; however, there is limited knowledge regarding the endoparasites that affect these mammals. This study involved the collection of seven nematode specimens (three males and four females) from the intestines of Hipposideros armiger in Shaoguan City, Guangdong, China. Next-generation sequencing was employed to obtain the mitochondrial DNA (mtDNA) genome, which was determined to be 14,130 base pairs in length. The mitochondrial genome comprised 12 protein-coding genes, 21 tRNA genes, 2 rRNA genes, and an AT-rich non-coding region. Phylogenetic analyses based on mtDNA sequences indicated that the nematode forms a sister clade to Nematodirus, exhibiting only 74% nucleotide identity. In contrast, the nuclear ITS1 gene demonstrated a high degree of nucleotide identity (98.6%–98.8%) with Durettenema guangdongense. Consequently, the parasitic nematode identified from H. armiger is likely to belong to the genus Durettenema and has been designated as Durettenema sp. 888. Furthermore, an epidemiological investigation revealed the presence of the parasitic nematode infections in H. armiger collected from Guangdong, Guangxi, and Guizhou Provinces. Given the widespread distribution of H. armiger and their tendency to inhabit areas in close proximity to human dwellings, the influence of parasite prevalence on bat population numbers and potential for human and domestic animal transmission of this pathogen warrants further investigation.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beveridge, I, Nguyen, H, Nyein, S, Cheng, C, Koehler, A, Shuttleworth, ME, Gasser, RB and Jabbar, A (2014) Description of Cloacina atthis sp. nov. from the stomach of the euro (Macropus robustus) (Marsupialia: Macropodidae) from Western Australia based on morphological and molecular criteria. Parasitology Research 113(9), 34853493. https://doi.org/10.1007/s00436-014-4019-1.CrossRefGoogle ScholarPubMed
Bogale, M, Baniya, A and DiGennaro, P (2020) Nematode identification techniques and recent advances. Plants 9(10). https://doi.org/10.3390/plants9101260.CrossRefGoogle ScholarPubMed
Bu, Y, Niu, H and Zhang, L (2013) Phylogenetic analysis of the genus Cylicocyclus (Nematoda: Strongylidae) based on nuclear ribosomal sequence data. Acta Parasitologica 58(2), 167173. https://doi.org/10.2478/s11686-013-0124-z.CrossRefGoogle ScholarPubMed
Chin. J. Prev. Vet. Med. Letko, M, Seifert, SN, Olival, KJ, Plowright, RK and Munster, VJ (2020) Bat-borne virus diversity, spillover and emergence. Nature Reviews Microbiology 18(8), 461471. https://doi.org/10.1038/s41579-020-0394-z.CrossRefGoogle ScholarPubMed
Cole, R and Viney, M (2018) The population genetics of parasitic nematodes of wild animals. Parasites & Vectors 11(1), 590. https://doi.org/10.1186/s13071-018-3137-5.CrossRefGoogle ScholarPubMed
Falcón-Ordaz, J, Iturbe-Morgado, JC and Martínez-Salazar, EA (2024) Redescription of Hassalstrongylus aduncus Chandler, 1932 (Nematoda: Heligmonellidae), with the description of a new species of the genus and their phylogenetic position with other Heligmosomoidea Travassos, 1914. Journal of Parasitology 110(5), 455470. https://doi.org/10.1645/20-81.CrossRefGoogle ScholarPubMed
Gendron, EM, Sevigny, JL, Byiringiro, I, Thomas, WK, Powers, TO and Porazinska, DL (2023) Nematode mitochondrial metagenomics: A new tool for biodiversity analysis. Molecular Ecology Resources 23(5), 975989. https://doi.org/10.1111/1755-0998.13761.CrossRefGoogle ScholarPubMed
Hotez, PJ, Brooker, S, Bethony, JM, Bottazzi, ME, Loukas, A and Xiao, S (2004) Hookworm infection. New England Journal of Medicine 351(8), 799807. https://doi.org/10.1056/NEJMra032492.CrossRefGoogle ScholarPubMed
Hung, GC, Chilton, NB, Beveridge, I, Zhu, XQ, Lichtenfels, JR and Gasser, RB (1999) Molecular evidence for cryptic species within Cylicostephanus minutus (Nematoda: Strongylidae). International Journal for Parasitology 29(2), 285291. https://doi.org/10.1016/s0020-7519(98)00203-3.CrossRefGoogle ScholarPubMed
Jian, R, Xu, Z, Zhang, DH, Xu, FZ, Song, SJ, Chen, HX and Ju, HD (2022) The identify of a new species of genus Durettenema from bats (Strongylida, Molineidae) Chinese Journal of Preventive Veterinary Medicine 44(10), 11111115,1124.Google Scholar
Jiang, T, Zhao, H, He, B, Zhang, L, Luo, J, Liu, Y, Sun, K, Yu, W, Wu, Y and Feng, J (2020) Research progress of bat biology and conservation strategies in China. Acta Theriologica Sinica 40, 539559. https://doi.org/10.16829/j.slxb.150430.Google Scholar
Jin, JJ, Yu, WB, Yang, JB, Song, Y, dePamphilis, CW, Yi, TS and Li, DZ (2020) GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21(1), 241. https://doi.org/10.1186/s13059-020-02154-5.CrossRefGoogle ScholarPubMed
Ju, H-D, Li, L and Zhang, L-P (2017) Durettenema guangdongense gen. et sp. nov. (Nematoda: Molineoidea) from Hipposideros larvatus (Horsfield) (Chiroptera: Rhinolophidae) with discussion of the taxonomic status of Macielia rhinolophi Yin, 1980. Acta Parasitologica 62(3), 575581. https://doi.org/10.1515/ap-2017-0069.CrossRefGoogle ScholarPubMed
Katoh, K, Misawa, K, Kuma, K and Miyata, T (2002) MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30(14), 30593066. https://doi.org/10.1093/nar/gkf436.CrossRefGoogle ScholarPubMed
Kearse, M, Moir, R, Wilson, A, Stones-Havas, S, Cheung, M, Sturrock, S, Buxton, S, Cooper, A, Markowitz, S, Duran, C, Thierer, T, Ashton, B, Meintjes, P and Drummond, A (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 16471649. https://doi.org/10.1093/bioinformatics/bts199.CrossRefGoogle ScholarPubMed
Laslett, D and Canback, B (2008) ARWEN: A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24(2), 172175. https://doi.org/10.1093/bioinformatics/btm573.CrossRefGoogle ScholarPubMed
Lee, H, Seo, M-G, Lee, S-H, Oem, J-K, Kim, S-H, Jeong, H, Kim, Y, Jheong, W-H, Kwon, O-D and Kwak, D (2021) Relationship among bats, parasitic bat flies, and associated pathogens in Korea. Parasites & Vectors 14(1), 503. https://doi.org/10.1186/s13071-021-05016-6.CrossRefGoogle ScholarPubMed
Lemoine, F and Gascuel, O (2021) Gotree/Goalign: Toolkit and Go API to facilitate the development of phylogenetic workflows. NAR Genomics and Bioinformatics 3(3), lqab075. https://doi.org/10.1093/nargab/lqab075.CrossRefGoogle ScholarPubMed
Li, D, Luo, R, Liu, CM, Leung, CM, Ting, HF, Sadakane, K, Yamashita, H and Lam, TW (2016) MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 311. https://doi.org/10.1016/j.ymeth.2016.02.020.CrossRefGoogle ScholarPubMed
Li, H, Chen, W, Qi, W, Ren, Z, Pan, X, Shen, F, Lu, J, Zhai, J, Wu, Y, Zou, J, Xiao, L, Feng, Y and Yuan, D (2024) Molecular characterization of a novel Spiruromorpha species in wild Chinese pangolin by mitogenome sequence analysis. Parasitology Research 123(2), 137. https://doi.org/10.1007/s00436-024-08143-y.CrossRefGoogle ScholarPubMed
Lord, JS and Brooks, DR (2014) Bat endoparasites: A UK perspective. In Klimpel, S and Mehlhorn, H (eds), Bats (Chiroptera) as Vectors of Diseases and Parasites: Facts and Myths. Berlin, Heidelberg: Springer Berlin Heidelberg, 6386.CrossRefGoogle Scholar
Ma, L, Li, J, He, J, Jiang, T, Hao, Y and Bu, Y (2024) Characterization and phylogenetic analysis of the mitochondrial genome of Cylicostephanus longibursatus. Parasitology Research 123(10), 363. https://doi.org/10.1007/s00436-024-08385-w.CrossRefGoogle ScholarPubMed
Mahalingam, S, Herrero, LJ, Playford, EG, Spann, K, Herring, B, Rolph, MS, Middleton, D, McCall, B, Field, H and Wang, LF (2012) Hendra virus: An emerging paramyxovirus in Australia. The Lancet Infectious Diseases 12(10), 799807. https://doi.org/10.1016/s1473-3099(12)70158-5.CrossRefGoogle ScholarPubMed
Mejías-Alpízar, MJ, Porras-Silesky, C, Rodríguez, EJ, Quesada, J, Alfaro-Segura, MP, Robleto-Quesada, J, Gutiérrez, R and Rojas, A (2024) Mitochondrial and ribosomal markers in the identification of nematodes of clinical and veterinary importance. Parasites & Vectors 17(1), 77. https://doi.org/10.1186/s13071-023-06113-4.CrossRefGoogle ScholarPubMed
Moser, MS and Hallem, EA (2024) Astacin metalloproteases in human-parasitic nematodes. Advances in Parasitology 126, 177204. https://doi.org/10.1016/bs.apar.2024.03.001.CrossRefGoogle ScholarPubMed
Nguyen, LT, Schmidt, HA, von Haeseler, A and Minh, BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1), 268274. https://doi.org/10.1093/molbev/msu300.CrossRefGoogle ScholarPubMed
Poon, ESK, Chen, G, Tsang, HY, Shek, CT, Tsui, WC, Zhao, H, Guénard, B and Sin, SYW (2023) Species richness of bat flies and their associations with host bats in a subtropical East Asian region. Parasites & Vectors 16(1), 37. https://doi.org/10.1186/s13071-023-05663-x.CrossRefGoogle Scholar
Puigbo, P, Bravo, IG and Garcia-Vallve, S (2008) CAIcal: A combined set of tools to assess codon usage adaptation. Biology Direct 3, 38. https://doi.org/10.1186/1745-6150-3-38.CrossRefGoogle ScholarPubMed
Rozas, J, Ferrer-Mata, A, Sanchez-DelBarrio, JC, Guirao-Rico, S, Librado, P, Ramos-Onsins, SE and Sanchez-Gracia, A (2017) DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution 34(12), 32993302. https://doi.org/10.1093/molbev/msx248.CrossRefGoogle ScholarPubMed
Seesao, Y, Gay, M, Merlin, S, Viscogliosi, E, Aliouat-Denis, CM and Audebert, C (2017) A review of methods for nematode identification. Journal of Microbiological Methods 138, 3749. https://doi.org/10.1016/j.mimet.2016.05.030.CrossRefGoogle ScholarPubMed
Seguel, M and Gottdenker, N (2017) The diversity and impact of hookworm infections in wildlife. International Journal for Parasitology. Parasites and Wildlife 6(3), 177194. https://doi.org/10.1016/j.ijppaw.2017.03.007.CrossRefGoogle ScholarPubMed
Smith, AT, Xie, Y, Hoffmann, RS, Lunde, D, MacKinnon, J, Wilson, DE and Wozencraft, WC (2010) A Guide to the Mammals of China. Princeton: Princeton University Press.CrossRefGoogle Scholar
Suchard, MA, Lemey, P, Baele, G, Ayres, DL, Drummond, AJ and Rambaut, A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4(1), vey016. https://doi.org/10.1093/ve/vey016.CrossRefGoogle ScholarPubMed
Taylor, LH, Latham, SM and Woolhouse, ME (2001) Risk factors for human disease emergence. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 356(1411), 983989. https://doi.org/10.1098/rstb.2001.0888.CrossRefGoogle ScholarPubMed
Thompson, RCA (2013) Parasite zoonoses and wildlife: One health, spillover and human activity. International Journal for Parasitology 43(12), 10791088. https://doi.org/10.1016/j.ijpara.2013.06.007.CrossRefGoogle ScholarPubMed
Thompson, RCA, Lymbery, AJ and Smith, A (2010) Parasites, emerging disease and wildlife conservation. International Journal for Parasitology 40(10), 11631170. https://doi.org/10.1016/j.ijpara.2010.04.009.CrossRefGoogle ScholarPubMed
Weatherman, S, Feldmann, H and de Wit, E (2018) Transmission of henipaviruses. Current Opinion in Virology 28, 711. https://doi.org/10.1016/j.coviro.2017.09.004.CrossRefGoogle ScholarPubMed
Woolhouse, MEJ, Dye, C, Cleaveland, S, Laurenson, MK and Taylor, LH (2001) Diseases of humans and their domestic mammals: Pathogen characteristics, host range and the risk of emergence. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 356(1411), 991999. https://doi.org/10.1098/rstb.2001.0889.Google Scholar
Zhu, X, D’Amelio, S, Paggi, L and Gasser, RB (2000) Assessing sequence variation in the internal transcribed spacers of ribosomal DNA within and among members of the Contracaecum osculatum complex (Nematoda: Ascaridoidea: Anisakidae). Parasitology Research 86(8), 677683. https://doi.org/10.1007/pl00008551.CrossRefGoogle ScholarPubMed