Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T10:10:13.207Z Has data issue: false hasContentIssue false

Parasitological versus molecular diagnosis of strongyloidiasis in serial stool samples: how many?

Published online by Cambridge University Press:  23 January 2017

E. Dacal
Affiliation:
Department of Parasitology, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
J.M. Saugar
Affiliation:
Department of Parasitology, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
T. Soler
Affiliation:
Department of Parasitology, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
J.M. Azcárate
Affiliation:
Department of Parasitology, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
M.S. Jiménez
Affiliation:
Department of Parasitology, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
F.J. Merino
Affiliation:
Department of Microbiology and Parasitology, Hospital Universitario Severo Ochoa, Leganés, Madrid 28911, Spain
E. Rodríguez*
Affiliation:
Department of Parasitology, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
*

Abstract

Strongyloidiasis is usually an asymptomatic disease in immunocompetent patients, caused by Strongyloides stercoralis. However, in immunocompromised patients it can produce a severe clinical profile. Therefore, a correct diagnosis is necessary in these cases and in those chronic asymptomatic patients. The low sensitivity of classical parasitological techniques requires the analysis of multiple serial stool samples. Molecular diagnostic techniques represent an improvement in the detection of the parasite. The objective of this study was to evaluate the minimum number of samples necessary to achieve maximum sensitivity by real-time polymerase chain reaction (PCR). A total of 116 stool samples from 39 patients were analysed by direct microscopic observation, agar culture, Harada–Mori and real-time PCR, in one, two, three and four or more consecutive samples. After two serial samples, 6 out of 39 patients were positive by parasitological and molecular techniques, while 16 of them were real-time PCR positive, and all the patients detected by parasitology were also detected by the molecular technique, reaching 100.00% sensitivity versus 83.00% when analysing a single sample. These data also reflect apparently low specificity (51.52%) and positive predictive value (PPV) (27.27 %) values, due to the high number of cases detected by real-time PCR and not by parasitological techniques. These cases were confirmed as true positives when analysing three, four or more samples from the same patient. In conclusion, the application of molecular techniques decreases the number of serial stool samples necessary to give a diagnosis with the maximum sensitivity.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becker, S.L., Piraisoody, N., Kramme, S., Marti, H., Silué, K.D., Panning, M., Nickel, B., Kern, W.V., Herrmann, M., Hatz, C.F., N'Goran, E.K., Utzinger, J. & von Müller, L. (2015) Real-time PCR for detection of Strongyloides stercoralis in human stool samples from Côte d'Ivoire: diagnostic accuracy, inter-laboratory comparison and patterns of hookworm co-infection. Acta Tropica 150, 210217.Google Scholar
Buonfrate, D., Formenti, F., Perandin, F. & Bisoffi, Z. (2015) Novel approaches to the diagnosis of Strongyloides stercoralis infection. Clinical Microbiology and Infection 21, 543552.Google Scholar
Cañavate, C., Cuadros, J., Martínez Ruiz, R. & Martin-Rabadán, P. (2009) El laboratorio de microbiología ante las enfermedades parasitarias importadas. pp. 135 in Cercenado, E. & Cantón, R. (Eds) Procedimientos en Microbiología Clínica. Madrid, Spain, Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC).Google Scholar
Conraths, F.J. & Schares, G. (2006) Validation of molecular-diagnostic techniques in the parasitological laboratory. Veterinary Parasitology 136, 9198.Google Scholar
Hulsen, T., de Vlieg, J. & Alkema, W. (2008) BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9, 488.Google Scholar
Janwan, P., Intapan, P.M., Thanchomnang, T., Lulitanond, V., Anamnart, W. & Maleewong, W. (2011) Rapid detection of Opisthorchis viverrini and Strongyloides stercoralis in human fecal samples using a duplex real-time PCR and melting curve analysis. Parasitology Research 109, 15931601.Google Scholar
Knopp, S., Mgeni, A.F., Khamis, I.S., Steinmann, P., Stothard, J.R., Rollinson, D., Marti, H. & Utzinger, J. (2008) Diagnosis of soil-transmitted helminths in the era of preventive chemotherapy: effect of multiple stool sampling and use of different diagnostic techniques. PLoS Neglected Tropical Diseases 2, e331.Google Scholar
Llewellyn, S., Inpankaew, T., Nery, S.V., Gray, D.J., Verweij, J.J., Clements, A.C., Gomes, S.J., Traub, R. & McCarthy, J.S. (2016) Application of a Multiplex Quantitative PCR to assess prevalence and intensity of intestinal parasite infections in a controlled clinical trial. PLoS Neglected Tropical Diseases 10, e0004380.Google Scholar
Marcos, L.A., Terashima, A., Dupont, H.L. & Gotuzzo, E. (2008) Strongyloides hyperinfection syndrome: an emerging global infectious disease. Transactions of the Royal Society of Tropical Medicine and Hygiene 102, 314318.Google Scholar
Mejia, R., Vicuña, Y., Broncano, N., Sandoval, C., Vaca, M., Chico, M., Cooper, P.J. & Nutman, T.B. (2013) A novel, multi-parallel, real-time polymerase chain reaction approach for eight gastrointestinal parasites provides improved diagnostic capabilities to resource-limited at-risk populations. American Journal of Tropical Medicine and Hygiene 88, 10411047.Google Scholar
Moghaddassani, H., Mirhendi, H., Hosseini, M., Rokni, M., Mowlavi, G. & Kia, E. (2011) Molecular diagnosis of Strongyloides stercoralis infection by PCR detection of specific DNA in human stool samples. Iran Journal of Parasitology 6, 2330.Google Scholar
Montes, M., Sawhney, C. & Barros, N. (2010) Strongyloides stercoralis: there but not seen. Current Opinion Infectious Diseases 23, 500504.Google Scholar
Nielsen, P.B. & Mojon, M. (1987) Improved diagnosis of Strongyloides stercoralis by seven consecutive stool specimens. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene A 263, 616618.Google Scholar
Olsen, A., van Lieshout, L., Marti, H., Polderman, T., Polman, K., Steinmann, P., Stothard, R., Thybo, S., Verweij, J.J. & Magnussen, P. (2009) Strongyloidiasis the most neglected of the neglected tropical diseases? Transactions of the Royal Society of Tropical Medicine and Hygiene 103, 967972.Google Scholar
Repetto, S.A., Ruybal, P., Solana, M.E., López, C., Berini, C.A., Alba Soto, C.D. & Cappa, S.M. (2016) Comparison between PCR and larvae visualization methods for diagnosis of Strongyloides stercoralis out of endemic area: a proposed algorithm. Acta Tropica 157, 169177.Google Scholar
Requena-Méndez, A., Chiodini, P., Bisoffi, Z., Buonfrate, D., Gotuzzo, E. & Muñoz, J. (2013) The laboratory diagnosis and follow up of strongyloidiasis: a systematic review. PLoS Neglected Tropical Diseases 7, e2002 Google Scholar
Saugar, J.M., Merino, F.J., Martín-Rabadán, P., Fernández-Soto, P., Ortega, S., Gárate, T. & Rodríguez, E. (2015) Application of real-time PCR for the detection of Strongyloides spp. in clinical samples in a reference center in Spain. Acta Tropica 42, 2025.Google Scholar
Schär, F., Trostdorf, U., Giardina, F., Khieu, V., Muth, S., Marti, H., Vounatsou, P. & Odermatt, P. (2013a) Strongyloides stercoralis: global distribution and risk factors. PLoS Neglected Tropical Diseases 7, e2288.Google Scholar
Schär, F.I., Odermatt, P., Khieu, V., Panning, M., Duong, S., Muth, S., Marti, H. & Kramme, S. (2013b) Evaluation of real-time PCR for Strongyloides stercoralis and hookworm as diagnostic tool in asymptomatic schoolchildren in Cambodia. Acta Tropica 126, 8992.Google Scholar
Siddiqui, A.A. & Berk, S.L. (2001) Diagnosis of Strongyloides stercoralis infection. Clinical Infectious Diseases 33, 10401047.Google Scholar
Sitta, R.B., Malta, F.M., Pinho, J.R., Chieffi, P.P., Gryschek, R.C. & Paula, F.M. (2014) Conventional PCR for molecular diagnosis of human strongyloidiasis. Parasitology 141, 716721.Google Scholar
Sultana, Y., Jeoffreys, N., Watts, M.R., Gilbert, G.L. & Lee, R. (2013) Real-time polymerase chain reaction for detection of Strongyloides stercoralis in stool. American Journal of Tropical Medicine and Hygiene 88, 10481051.Google Scholar
Verweij, J.J. (2014) Application of PCR-based methods for diagnosis of intestinal parasitic infections in the clinical laboratory. Parasitology 141, 18631872.Google Scholar
Verweij, J.J., Canales, M., Polman, K., Ziem, J., Brienen, E.A., Polderman, A.M. & van Lieshout, L. (2009) Molecular diagnosis of Strongyloides stercoralis in faecal samples using real-time PCR. Transactions of the Royal Society of Tropical Medicine and Hygiene 103, 342346.Google Scholar