Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T04:20:24.501Z Has data issue: false hasContentIssue false

Quantitative real-time PCR (qPCR) for the detection and quantification of dactylogyrid parasites infecting Lutjanus guttatus

Published online by Cambridge University Press:  07 March 2017

L.C. Soler-Jiménez
Affiliation:
Posgrado en Ciencias del Mar y Limnología, Unidad Mazatlán, Universidad Nacional Autónoma de México, Avenida Joel Montes Camarena s/n, Mazatlán, Sinaloa, C.P. 82040, México Laboratorio de Parasitología, Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental, Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa, C.P. 82010, México Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Unidad Mérida. Merida, Yucatan, C.P. 97310, México
A. García-Gasca
Affiliation:
Laboratorio de Parasitología, Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental, Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa, C.P. 82010, México
E.J. Fajer-Ávila*
Affiliation:
Laboratorio de Parasitología, Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental, Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa, C.P. 82010, México
*

Abstract

Severe infections of the spotted rose snapper Lutjanus guttatus resulting from dactylogyrid monogeneans present a risk to aquaculture. Currently, the diagnosis of this infection requires the morphological identification and manual quantification of parasites. Based on the characterization of the 28S rRNA gene of dactylogyrid species present in L. guttatus, specific primers were designed for real-time polymerase chain reaction (qPCR) using EvaGreen® chemistry. The standard curve method estimated the number of dactylogyrids accurately. A total of 85 gill samples from cage-cultured fish infected with dactylogyrids were analysed. The estimated number of dactylogyrids using this molecular method was very similar to the manual count that was performed initially. The standardized qPCR approach will be helpful as a complementary method for the early routine monitoring of dactylogyrid infections and for epidemiological studies in which a high number of fish must be studied.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez-Lajonchere, L., Reina-Cáñez, M., Camacho-Hernández, M. & Kraul, S. (2007) Design of a pilot-scale tropical marine fin fish hatchery for a research center at Mazatlan, Mexico. Aquaculture Engineering 36, 8196.CrossRefGoogle Scholar
Brinkman, N.E., Haugland, R.A., Wymer, L.J., Byappanahalli, M., Whitman, R.L. & Vesper, S.J. (2003) Evaluation of a rapid, quantitative real-time PCR method for cellular enumeration of pathogenic Candida species in water. Applied and Environmental Microbiology 69, 17751782.CrossRefGoogle ScholarPubMed
Cavender, W.P., Wood, J.S., Powell, M.S., Overturf, K. & Cain, K.D. (2004) Real-time quantitative polymerase chain reaction (qPCR) to identify Myxobolus cerebralis in rainbow trout Oncorhynchus mykiss . Diseases of Aquatic Organisms Journal 60, 205213.CrossRefGoogle ScholarPubMed
Collins, C.M., Kerr, R., McIntosh, R. & Snow, M. (2010) Development of a real-time PCR assay for the identification of Gyrodactylus parasites infecting salmonids in northern Europe. Diseases of Aquatic Organisms Journal 90, 135142.CrossRefGoogle ScholarPubMed
Corbeil, S., Arzul, I., Diggles, B., Heasman, M., Chollet, B., Berthe, F.C. & Crane, M.S. (2006) Development of a TaqMan PCR assay for the detection of Bonamia species. Diseases of Aquatic Organisms Journal 71, 7580.CrossRefGoogle ScholarPubMed
Del Río-Zaragoza, O.B., Fajer-Ávila, E.J. & Almazán-Rueda, P. (2010) Haematological and gill responses to an experimental infection of dactylogyrid monogeneans on the spotted rose snapper Lutjanus guttatus (Steindachner, 1869). Aquaculture Research 41, 110.CrossRefGoogle Scholar
Ek-Huchim, J.P., Jimenez-García, I., Pérez-Vega, J.A. & Rodríguez-Canul, R. (2012) Non-lethal detection of DNA from Cichlidogyrus spp. (Monogenea, Ancyrocephalinae) in gill mucus of the Nile tilapia Oreochromis niloticus . Diseases of Aquatic Organisms 98, 155162.CrossRefGoogle ScholarPubMed
Fajer-Ávila, E.J., Velásquez-Medina, S.P. & Betancourt-Lozano, M. (2007) Effectiveness of treatments against eggs, and adults of Haliotrema sp. and Euryhaliotrema sp. (Monogenea: Ancyrocephalinae) infecting red snapper, Lutjanus guttatus . Aquaculture 264, 6672.CrossRefGoogle Scholar
García-Vargas, F., Fajer-Ávila, E.J. & Lamothe-Argumedo, R. (2008) Two new species of Dactylogyridae (Monogenoidea) on rose spotted snapper, Lutjanus guttatus (Osteichthyes: Lutjanidae), from the coasts of Nayarit and Sinaloa, Mexico. Zootaxa 1729, 6168.CrossRefGoogle Scholar
Griffin, M.J., Pote, L.M., Camus, A.C., Mauel, M.J., Greenway, T.E. & Wise, D.J. (2009) Application of a real-time PCR assay for the detection of Henneguya ictaluri in commercial channel catfish ponds. Diseases of Aquatic Organisms 86, 223233.CrossRefGoogle ScholarPubMed
Hallett, S.L. & Bartholomew, J.L. (2006) Application of a real-time PCR assay to detect and quantify the myxozoan parasite Ceratomyxa shasta in river water samples. Diseases of Aquatic Organisms 71, 109118.CrossRefGoogle ScholarPubMed
Jansson, E., Lindberg, L., Saker, E. & Aspan, A. (2008) Diagnosis of bacterial kidney disease by detection of Renibacterium salmoninarum by real-time PCR. Journal of Fish Diseases 31, 755763.CrossRefGoogle ScholarPubMed
Kearn, G.C. (1986) The eggs of monogeneans. Advances in Parasitology 25, 175273.CrossRefGoogle ScholarPubMed
Konnai, S., Mekata, H., Mingala, C.N., Abes, N.S., Gutiérrez, C.A., Herrera, J.R., Dargantes, A.P., Witola, W.H., Cruz, L.C., Inoue, N., Onumaa, M. & Ohashi, K. (2009) Development and application of a quantitative real-time PCR for the diagnosis of Surra in water buffaloes. Infection, Genetics and Evolution Journal 9, 449452.CrossRefGoogle ScholarPubMed
Kritsky, D., Tingbao, Y. & Yuan, S. (2009) Dactylogyrids (Monogenoidea, Polyonchoinea) parasitizing the gills of snappers (Perciformes, Lutjanidae): proposal of Haliotrematoides n. gen. and descriptions of new and previously described species from marine fishes of the Red Sea, the eastern and Indo-west Pacific Ocean, Gulf of Mexico and Caribbean Sea. Zootaxa 1970, 151.CrossRefGoogle Scholar
Littlewood, D.T., Curini-Galletti, M. & Herniou, E.A. (2000) The interrelationships of Proseriata (Platyhelminthes: Seriata) flatworms tested with molecules and morphology. Molecular Phylogenetics and Evolution 16, 449466.CrossRefGoogle ScholarPubMed
Madrid, J., Sanchez, P. & Ruiz, A. (1997) Diversity and abundance of a tropical fishery on the Pacific shelf of Michoacan, Mexico. Estuarine, Coastal and Shelf Science 45, 485495.CrossRefGoogle Scholar
Miller, S.A., Dykes, D.D. & Polesky, H.F. (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research 16, 1215.CrossRefGoogle ScholarPubMed
Paperna, I. (1963) Some observations on the biology and ecology of Dactylogyrus vastator in Israel. Bulletin of Fish Culture in Israel 15, 828.Google Scholar
Plaisance, L., Littelewood, T., Olson, P. & Morand, S. (2005) Molecular phylogeny of gill monogeneans (Platyhelminthes, Monogenea, Dactylogyridae) and colonization of Indo-West Pacific butterfly fish host (Perciformes, Chaetodontidae). Zoologica Scripta 34, 425436.CrossRefGoogle Scholar
Roe, J.D., Haugland, R.A., Vesper, S.J. & Wymer, L.J. (2001) Quantification of Stachybotrys chartarum conidia in indoor dust using real time, fluorescent-probe-based detection of PCR products. Journal of Exposure Analysis and Environmental Epidemiology 11, 1220.Google ScholarPubMed
Snow, M., McKay, P., McBeath, A.J., Black, J., Doig, F., Kerr, R., Cunningham, C.O., Nylund, A. & Devold, M. (2006) Development, application and validation of a TaqMan real-time RT-PCR assay for the detection of infectious salmon anaemia virus (ISAV) in Atlantic salmon (Salmo salar). Developmental Biology 126, 133145.Google ScholarPubMed
Soler-Jiménez, L.C. & Fajer-Ávila, E.J. (2012) Microhabitats of dactylogyrids monogenean on the gills of wild spotted rose snapper, Lutjanus guttatus (Steindachner, 1869) from Mazatlán Bay, México. Folia Parasitologica 59, 5358.CrossRefGoogle Scholar
Soler-Jiménez, L.C., García-Gasca, A. & Fajer-Ávila, E.J. (2012) Euryhaliotrematoides mehen n. sp. (Dactylogyridae) from the gills of the spotted rose snapper, Lutjanus guttatus (Lutjanidae; Perciformes). Systematic Parasitology 982, 113119.CrossRefGoogle Scholar
Soler-Jiménez, L.C., Morales-Serna, F. & Fajer-Ávila, E.J. (2015) Rapid infection and proliferation of dactylogyrid monogeneans on gills of spotted rose snapper (Lutjanus guttatus) after transfer to a sea-cage. Veterinary Parasitology 210, 186193.CrossRefGoogle ScholarPubMed
Taylor, T.K., Boyle, D.B. & Bingham, J. (2008) Development of a TaqMan PCR assay for the detection of Trypanosoma evansi, the agent of surra. Veterinary Parasitology 153, 255264.CrossRefGoogle ScholarPubMed
Vargas-Machuca, S.C., Ponce-Palafox, J.T., Arredondo-Figueroa, J.L., Chávez-Ortiz, E.A. & Vernon-Carter, E.J. (2008) Physico-chemical water parameters variation in the floating cages of snappers (Lutjanus peru and L. guttatus) farmed in tropical sea. Revista Mexicana de Ingeniería Química 7, 237242.Google Scholar
Whittington, I.D. (2005) Monogenea Monopisthocotylea (ectoparasitic flukes). pp. 6372 in Rohde, K. (Ed.) Marine parasitology. Melbourne, Australia, CABI.Google Scholar
Whittington, I.D. & Chisholm, L.A. (2008) Diseases caused by Monogenea. pp. 683816 in Eiras, J.C., Segner, H., Wahli, T. & Kapoor, B.G. (Eds) Fish diseases. Vol. 2. Enfield, Jersey, Plymouth USA, Science Publishers USA.Google Scholar