Hostname: page-component-6bf8c574d5-8gtf8 Total loading time: 0 Render date: 2025-02-22T19:23:36.226Z Has data issue: false hasContentIssue false

Receptors for growth and development of Schistosoma mansoni

Published online by Cambridge University Press:  14 February 2025

Iman F. Abou-El-Naga*
Affiliation:
Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
*
Corresponding author: Iman F. Abou-El-Naga; Email: eman.abuelnaga@alexmed.edu.eg

Abstract

The growth and development of schistosomes are tightly regulated by various receptors throughout their life cycle. Each stage of the parasite inhabits a distinct habitat and responds to different factors that drive its growth and development. With two hosts involved in its life cycle (mammalian and snail), the parasite must go through additional free-living stages to transition between them. Moreover, communication between male and female worms is essential for the maturation of females. The ability of adult schistosomes to survive in human hosts for up to thirty years demonstrates their capacity to efficiently utilize host nutrients for metabolic processes and growth. In Schistosoma mansoni, receptors mediate the utilization of growth factors derived from both the parasite itself and the host. Nuclear receptors, in particular, collaborate with other proteins to regulate the expression of genes essential for various developmental functions. Receptors also play a pivotal role in RNA export, which is crucial for the parasite development. Additionally, neurotransmitter receptors are essential for the growth and development of larval stages. This review aims to elucidate the mechanisms by which these receptors regulate cell proliferation, differentiation, and maturation throughout the parasite life cycle. Understanding these processes could provide insights into the role of receptors in Schistosoma mansoni development and potentially lead to innovative therapeutic strategies to combat human schistosomiasis.

Type
Review Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou-El-Naga, IF and Radwan, EH (2012) Defense response of susceptible and resistant Biomphalaria alexandrina snails against Schistosoma mansoni infection. Revista de Biologia Tropical 60, 11951204. https://doi.org/10.15517/rbt.v60i3.1771.Google ScholarPubMed
Abou-El-Naga, IF, Sadaka, HA, Amer, EI, Diab, IH and Khedr, SI (2015) Impact of the age of Biomphalaria alexandrina snails on Schistosoma mansoni transmission: Modulation of the genetic outcome and the internal defence system of the snail. Memórias do Instituto Oswaldo Cruz 110, 585595. https://doi.org/10.1590/0074-02760150016.CrossRefGoogle ScholarPubMed
Abou-El-Naga, IF (2015) Demographic, socioeconomic and environmental changes affecting circulation of neglected tropical diseases in Egypt. Asian Pacific Journal of Tropical Medicine 8, 881888. https://doi.org/10.1016/j.apjtm.2015.10.015.CrossRefGoogle ScholarPubMed
Abou-El-Naga, IF (2018) Towards elimination of schistosomiasis after 5000 years of endemicity in Egypt. Acta Tropica 181, 112121. https://doi.org/10.1016/j.actatropica.2018.02.005.CrossRefGoogle ScholarPubMed
Abou-El-Naga, IF (2021) Review: Schistosoma mansoni phosphatidylinositol 3 kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biolology 256, 110632. https://doi.org/10.1016/j.cbpb.2021.110632.CrossRefGoogle ScholarPubMed
Abreu, FC, Pereira, RV, Oliveira, VF, Gomes Mde, S, Jannotti-Passos, LK, Borges, WC and Guerra-Sá, R (2013) Characterization of export receptor exportins (XPOs) in the parasite Schistosoma mansoni. Parasitology Research 112, 41514159. https://doi.org/10.1007/s00436-013-3606-x.CrossRefGoogle ScholarPubMed
Ahier, A, Khayath, N, Vicogne, J and Dissous, C (2008) Insulin receptors and glucose uptake in the human parasite Schistosoma mansoni. Parasite 15, 573579. https://doi.org/10.1051/parasite/2008154573.CrossRefGoogle ScholarPubMed
Albuquerque, EX, Pereira, EF, Alkondon, M and Rogers, SW (2009) Mammalian nicotinic acetylcholine receptors: From structure to function. Physiological Reviews 89, 73120. https://doi.org/10.1152/physrev.00015.2008.CrossRefGoogle ScholarPubMed
AlHariry, NS, El Saftawy, EA, Aboulhoda, BE, Abozamel, AH, Alghamdi, MA, Hamoud, AE and Khalil Ghanam, WAE (2024) Comparison of tissue biomarkers between non-schistosoma and schistosoma-associated urothelial carcinoma. Tissue and Cell 88, 102416. https://doi.org/10.1016/j.tice.2024.102416.CrossRefGoogle ScholarPubMed
Amer, EI, Abou-El-Naga, IF, Boulos, LM, Ramadan, HS and Younis, SS (2022) Praziquantel-encapsulated niosomes against Schistosoma mansoni with reduced sensitivity to praziquantel. Biomedica 42, 6784. https://doi.org/10.7705/biomedica.5913.CrossRefGoogle ScholarPubMed
Andrade, LF, Nahum, LA, Avelar, LG, Silva, LL, Zerlotini, A, Ruiz, JC and Oliveira, G (2011) Eukaryotic protein kinases (ePKs) of the helminth parasite Schistosoma mansoni. BMC Genomics 12, 215234. https://doi.org/10.1186/1471-2164-12-215.CrossRefGoogle ScholarPubMed
Arnon, R, Silman, I and Tarrab-Hazdai, R (1999) Acetylcholinesterase of Schistosoma mansoni: functional correlates. Protein Science 8, 25532561. https://doi.org/10.1110/ps.8.12.2553.CrossRefGoogle ScholarPubMed
Avelar, LG, Nahu, LA, Andrade, LF and Oliveira, G (2011) Functional diversity of the Schistosoma mansoni tyrosine kinases. Journal of Signal Transduction 2011, 603290. https://doi.org/10.1155/2011/603290.CrossRefGoogle ScholarPubMed
Baba, AB, Rah, B, Bhat, GR, Mushtaq, I, Parveen, S, Hassan, R, Hameed Zargar, M and Afroze, D (2022) Transforming growth factor-beta (TGF-β) signaling in cancer – a betrayal within. Frontiers in Pharmacology 13, 791272. https://doi.org/10.3389/fphar.2022.791272.CrossRefGoogle Scholar
Beckmann, S, Buro, C, Dissous, C, Hirzmann, J and Grevelding, CG (2010) The Syk kinase SmTK4 of Schistosoma mansoni is involved in the regulation of spermatogenesis and oogenesis. PLOS Pathogens 6(2), e1000769. https://doi.org/10.1371/journal.ppat.1000769.CrossRefGoogle ScholarPubMed
Beckmann, S, Hahnel, S, Cailliau, K, Vanderstraete, M, Browaeys, E, Dissous, C and Grevelding, CG (2011) Characterization of the Src/Abl hybrid kinase SmTK6 of Schistosoma mansoni. Journal of Biological Chemistry 286, 4232542336. https://doi.org/10.1074/jbc.M110.210336.CrossRefGoogle ScholarPubMed
Beckmann, S, Quack, T, Dissous, C, Cailliau, K, Lang, G and Grevelding, CG (2012) Discovery of platyhelminth-specific α/β-integrin families and evidence for their role in reproduction in Schistosoma mansoni. PLOS One 7(12), e52519. https://doi.org/10.1371/journal.pone.0052519.CrossRefGoogle ScholarPubMed
Beech, RN, Callanan, MK, Rao, VT, Dawe, GB and Forrester, SG (2013) Characterization of Cys-loop receptor genes involved in inhibitory amine neurotransmission in parasitic and free-living nematodes. Parasitology International 62, 599605. https://doi.org/10.1016/j.parint.2013.03.010.CrossRefGoogle ScholarPubMed
Berriman, M, Haas, BJ, LoVerde, PT, Wilson, RA, Dillon, GP, Cerqueira, GC, Mashiyama, ST, Al-Lazikani, B, Andrade, LF, Ashton, PD, Aslett, MA, Bartholomeu, DC, Blandin, G, Caffrey, CR, Coghlan, A, Coulson, R, Day, TA, Delcher, A, DeMarco, R, Djikeng, A, Eyre, T, Gamble, JA, Ghedin, E, Gu, Y, Hertz-Fowler, C, Hirai, H, Hirai, Y, Houston, R, Ivens, A, Johnston, DA, Lacerda, D, Macedo, CD, McVeigh, P, Ning, Z, Oliveira, G, Overington, JP, Parkhill, J, Pertea, M, Pierce, RJ, Protasio, AV, Quail, MA, Rajandream, MA, Rogers, J, Sajid, M, Salzberg, SL, Stanke, M, Tivey, AR, White, O, Williams, DL, Wortman, J, Wu, W, Zamanian, M, Zerlotini, A, Fraser-Liggett, CM, Barrell, BG and El-Sayed, NM (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460, 352358. https://doi.org/10.1038/nature08160.CrossRefGoogle ScholarPubMed
Bertin, B, Caby, S, Oger, F, Sasorith, S, Wurtz, JM and Pierce, RJ (2005) The monomeric orphan nuclear receptor Schistosoma mansoni Ftz-F1 dimerizes specifically and functionally with the schistosome RXR homologue, SmRXR1. Biochemical and Biophysical Research Communications 327, 10721082. https://doi.org/10.1016/j.bbrc.2004.12.101.CrossRefGoogle ScholarPubMed
Bertin, B, Oger, F, Cornette, J, Caby, S, Noël, C, Capron, M, Fantappie, MR, Rumjanek, FD and Pierce, RJ (2006) Schistosoma mansoni CBP/p300 has a conserved domain structure and interacts functionally with the nuclear receptor SmFtz-F1. Molecular and Biochemical Parasitology 146, 180191. https://doi.org/10.1016/j.molbiopara.2005.12.006.CrossRefGoogle Scholar
Bjarnadóttir, TK, Gloriam, DE, Hellstrand, SH, Kristiansson, H, Fredriksson, R and Schiöth, HB (2006) Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88, 263273. https://doi.org/10.1016/j.ygeno.2006.04.001.CrossRefGoogle Scholar
Blanton, RE and Licate, LS (1992) Developmental regulation of protein synthesis in schistosomes. Molecular and Biochemical Parasitology 51, 201208. https://doi.org/10.1016/0166-6851(92)90070-z.CrossRefGoogle ScholarPubMed
Bologna, Z, Teoh, J-P, Bayoumi, AS, Tang, Y, and Kim, I-M (2017) Biased G protein-coupled receptor signaling: new player in modulating physiology and pathology. Biomolecules & Therapeutics 25, 1225. https://doi.org/10.4062/biomolther.2016.165.CrossRefGoogle ScholarPubMed
Bostic, JR and Strand, M (1996) Molecular cloning of a Schistosoma mansoni protein expressed in the gynecophoral canal of male worms. Molecular and Biochemical Parasitology 79, 7989. https://doi.org/10.1016/0166-6851(96)02640-0.CrossRefGoogle ScholarPubMed
Buddenborg, SK, Kamel, B, Hanelt, B, Bu, L, Zhang, SM, Mkoji, GM, Loker, ES (2019) The in vivo transcriptome of Schistosoma mansoni in the prominent vector species Biomphalaria pfeifferi with supporting observations from Biomphalaria glabrata. PLOS Neglected Tropical Diseases 13(9): e0007013. https://doi.org/10.1371/journal.pntd.0007013CrossRefGoogle ScholarPubMed
Bueding, E, Liu, CL and Rogers, SH (1972) Inhibition by metrifonate and dichlorvos of cholinesterases in schistosomes. British Journal of Pharmacology 46, 480487. https://doi.org/10.1111/j.1476-5381.1972.tb08145.x.CrossRefGoogle ScholarPubMed
Bueding, E (1950) Carbohydrate metabolism of Schistosoma mansoni. Journal of General Physiology 33, 475495.CrossRefGoogle ScholarPubMed
Bulynko, YA and BW, O’Malle (2011) Nuclear receptor coactivators: Structural and functional biochemistry. Biochemistry 50, 313328. https://doi.org/10.1021/bi101762x.CrossRefGoogle ScholarPubMed
Buro, C, Burmeister, C, Quack, T and Grevelding, CG (2017) Identification and first characterization of SmEps8, a potential interaction partner of SmTK3 and SER transcribed in the gonads of Schistosoma mansoni. Experimental Parasitology 180, 5563. https://doi.org/10.1016/j.exppara.2016.12.002.CrossRefGoogle ScholarPubMed
Callau-Vázquez, D, Pless, SA and Lynagh, T (2018) Investigation of agonist recognition and channel properties in a flatworm glutamate-gated chloride channel. Biochemistry 57, 13601368. https://doi.org/10.1021/acs.biochem.7b01245.CrossRefGoogle Scholar
Camacho, M and Agnew, A (1995) Schistosoma: Rate of glucose import is altered by acetylcholine interaction with tegumental acetylcholine receptors and acetylcholinesterase. Experimental Parasitology 81, 584591. https://doi.org/10.1006/expr.1995.1152.CrossRefGoogle ScholarPubMed
Camacho, M, Tarrab-Hazdai, R, Espinoza, B, Arnon, R and Agnew, A (1994) The amount of acetylcholinesterase on the parasite surface reflects the differential sensitivity of schistosome species to metrifonate. Parasitology 108:153–60. https://doi.org/10.1017/s0031182000068244CrossRefGoogle ScholarPubMed
Carlo, JM, Osman, A, Niles, EG, Wu, W, Fantappie, MR, Oliveira, FM and LoVerde, PT (2007) Identification and characterization of an R-Smad ortholog (SmSmad1B) from Schistosoma mansoni. The FEBS Journal 274:4075–93. https://doi.org/10.1111/j.1742-4658.2007.05930.xCrossRefGoogle ScholarPubMed
Castanotto, D, Lingeman, R, Riggs, AD and Rossi, JJ (2009) CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proceedings of the National Academy of Sciences 106:21655–9. https://doi.org/10.1073/pnas.0912384106CrossRefGoogle ScholarPubMed
Cattaneo, F, Guerra, G, Parisi, M, De Marinis, M, Tafuri, D, Cinelli, M and Ammendola, R (2014) Cell-surface receptors transactivation mediated by G protein-coupled receptors. International Journal of Molecular Sciences 15, 1970019728. https://doi.org/10.3390/ijms151119700.CrossRefGoogle ScholarPubMed
Caveney, S, Cladman, W, Verellen, L and Donly, C (2006) Ancestry of neuronal monoamine transporters in the Metazoa. Journal of Experimental Biology. 209, 48584868. https://doi.org/10.1242/jeb.02607.CrossRefGoogle ScholarPubMed
Chan, JD, Cupit, PM, Gunaratne, GS, McCorvy, JD, Yang, Y, Stoltz, K, Webb, TR, Dosa, PI, Roth, BL, Abagyan, R, Cunningham, C and Marchant, JS (2017) The anthelmintic praziquantel is a human serotoninergic G-protein-coupled receptor ligand. Nature Communications 8, 1910. https://doi.org/10.1038/s41467-017-02084-0.CrossRefGoogle ScholarPubMed
Chen, L, Vasoya, RP, Toke, NH, Parthasarathy, A, Luo, S, Chiles, E, Flores, J, Gao, N, Bonder, EM, Su, X and Verzi, MP (2020) HNF4 regulates fatty acid oxidation and is required for renewal of intestinal stem cells in mice. Gastroenterology 158, 985999. e9. https://doi.org/10.1053/j.gastro.2019.11.031.CrossRefGoogle ScholarPubMed
Chen, R, Wang, J, Gradinaru, I, Vu, HS, Geboers, S, Naidoo, J, Ready, JM, Williams, NS, DeBerardinis, RJ, Ross, EM and Collins, JJ (2022) A male-derived nonribosomal peptide pheromone controls female schistosome development. Cell 185, 15061520. e17. https://doi.org/10.1016/j.cell.2022.03.017.CrossRefGoogle ScholarPubMed
Chen, PY, Qin, L and Simons, M (2023) TGFβ signaling pathways in human health and disease. Frontiers in Molecular Biosciences 10, 1113061. https://doi.org/10.3389/fmolb.2023.1113061.CrossRefGoogle ScholarPubMed
Cheng, G, Li, X, Qin, F, Xu, R, Zhang, Y, Liu, J, Gu, S and Jin, Y (2019) Functional analysis of theFrzb2 gene in Schistosoma japonicum. Veterinary Research 50, 108. https://doi.org/10.1186/s13567-019-0716-1.CrossRefGoogle ScholarPubMed
Childs, JE, Shirazian, D, Gloer, JB and Schiller, EL (1986) In vitro orientation of male Schistosoma mansoni to extracts derived from female schistosomes. Journal of Chemical Ecology 12, 17291738. https://doi.org/10.1007/BF01022378.CrossRefGoogle Scholar
Collins, JJ III, Wang, B, Lambrus, BG, Tharp, ME, Iyer, H and Newmark, PA (2013) Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature 494, 476479. https://doi.org/10.1038/nature11924.CrossRefGoogle ScholarPubMed
Dale, HH (1914) The action of certain esters and ethers of choline, and their relation to muscarine. Journal of Pharmacology and Experimental Therapeutics 6, 147190.CrossRefGoogle Scholar
Davies, SJ, Shoemaker, CB and Pearce, EJ (1998) A divergent member of the transforming growth factor beta receptor family from Schistosoma mansoni is expressed on the parasite surface membrane. Journal of Biological Chemistry 273, 1123411240. https://doi.org/10.1074/jbc.273.18.11234.CrossRefGoogle ScholarPubMed
Day, TA, Chen, GZ, Miller, C, Tian, M, Bennett, JL and Pax, RA (1996) Cholinergic inhibition of muscle fibres isolated from Schistosoma mansoni (Trematoda: Digenea). Parasitology 113, 5561. https://doi.org/10.1017/s0031182000066270.CrossRefGoogle ScholarPubMed
de Jong-Brink, M, ter Maat, and Tensen, CP (2001) NPY in invertebrates: Molecular answers to altered functions during evolution. Peptides 22, 309315. https://doi.org/10.1016/s0196-9781(01)00332-1.CrossRefGoogle ScholarPubMed
De Mendonça, RL, Bouton, D, Bertin, B, Escriva, H, Noël, C, Vanacker, JM, Cornette, J, Laudet, V and Pierce, RJ (2002) A functionally conserved member of the FTZ-F1 nuclear receptor family from Schistosoma mansoni. European Journal of Biochemistry 269, 57005711. https://doi.org/10.1046/j.1432-1033.2002.03287.x.CrossRefGoogle ScholarPubMed
de Mendonça, RL, Escriva, H, Bouton, D, Zelus, D, Vanacker, JM, Bonnelye, E, Cornette, J, Pierce, RJ and Laudet, V (2000) Structural and functional divergence of a nuclear receptor of the RXR family from the trematode parasite Schistosoma mansoni. European Journal of Biochemistry 267, 32083219. https://doi.org/10.1046/j.1432-1327.2000.01344.x.CrossRefGoogle ScholarPubMed
Du, X, McManus, DP, Fogarty, CE, Jones, MK and You, H (2022) Schistosoma mansoni fibroblast growth factor receptor A orchestrates multiple functions in schistosome biology and in the host-parasite interplay. Frontiers in Immunology 13, 868077. https://doi.org/10.3389/fimmu.2022.868077.CrossRefGoogle ScholarPubMed
Du, X, McManus, DP, French, JD, Collinson, N, Sivakumaran, H, MacGregor, SR, Fogarty, CE, Jones, MK and You, H (2023) CRISPR interference for sequence-specific regulation of fibroblast growth factor receptor A in Schistosoma mansoni. Frontiers in Immunology 13:1105719. https://doi.org/10.3389/fimmu.2022.1105719CrossRefGoogle ScholarPubMed
Dufour, V, Beech, RN, Wever, C, Dent, JA and Geary, TG (2013) Molecular cloning and characterization of novel glutamate-gated chloride channel subunits from Schistosoma mansoni. PLOS Pathogens 9(8), e1003586. https://doi.org/10.1371/journal.ppat.1003586.CrossRefGoogle ScholarPubMed
Echeverria, PC and Picard, D (2010) Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochimica et Biophysica Acta 1803, 641649. https://doi.org/10.1016/j.bbamcr.2009.11.012.CrossRefGoogle ScholarPubMed
El Naga, IF, Eissa, MM, Mossallam, SF and El-Halim, SI (2010) Inheritance of Schistosoma mansoni infection incompatibility in Biomphalaria alexandrina snails. Memórias do Instituto Oswaldo Cruz 105, 149154. https://doi.org/10.1590/s0074-02762010000200007.CrossRefGoogle ScholarPubMed
el Zawawy, LA, el Nassery, SF, al Azzouni, MZ, Abou el Naga, IF, el Temsahi, MM and Awadalla, HN (1995) A study on patients with eosinophilia of suspected parasitic origin. Journal of the Egyptian Society of Parasitology 25, 245255.Google Scholar
Elhenawy, AA, Ashour, RH, Nabih, N, Shalaby, NM, El-Karef, AA and Abou-El-Wafa, HS (2017) Insulin growth factor inhibitor as a potential new anti-schistosoma drug: An in vivo experimental study. Biomedicine and Pharmacotherapy 95, 13461358. https://doi.org/10.1016/j.biopha.2017.09.015.CrossRefGoogle ScholarPubMed
El-Sakkary, N, Chen, S, Arkin, MR, Caffrey, CR and Ribeiro, P (2018) Octopamine signaling in the metazoan pathogen Schistosoma mansoni: Localization, small-molecule screening and opportunities for drug development. Disease Models & Mechanisms 11(7), dmm033563. https://doi.org/10.1242/dmm.033563.CrossRefGoogle ScholarPubMed
El-Shabasy, EA, Saleh, MA, Said, AE and Reda, ES (2024) Evaluation of Schistosoma mansoni nervous system using confocal laser electron microscopy: Nerve sensilla and FMRFamide while referring to F-actin abundance. Egyptian Journal of Basic and Applied Sciences 11, 281296. https://doi.org/10.1080/2314808X.2024.2335853.CrossRefGoogle Scholar
El-Shehabi, F, Vermeire, J, Timothy, P and Yoshino, TPR (2009) Developmental expression analysis and immunolocalization of a biogenic amine receptor in Schistosoma mansoni. Experimental Parasitology 122, 1727. https://doi.org/10.1016/j.exppara.2009.01.001.CrossRefGoogle ScholarPubMed
El-Shehabi, F and Ribeiro, P (2010) Histamine signalling in Schistosoma mansoni: Immunolocalisation and characterisation of a new histamine-responsive receptor (SmGPR-2). International Journal for Parasitology 40, 1395–406. https://doi.org/10.1016/j.ijpara.2010.04.006CrossRefGoogle ScholarPubMed
El-Shehabi, F, Taman, A, Moali, LS, El-Sakkary, N and Ribeiro, P (2012) A novel G protein-coupled receptor of Schistosoma mansoni (smGPR-3) is activated by dopamine and is widely expressed in the nervous system. PLOS Neglected Tropical Diseases 6, e1523. https://doi.org/10.1371/journal.pntd.0001523.CrossRefGoogle Scholar
Escobedo, G, Roberts, CW, Carrero, JC and Morales-Montor, J (2005) Parasite regulation by host hormones: An old mechanism of host exploitation? Trends in Parasitology 21,588593. https://doi.org/10.1016/j.pt.2005.09.013.CrossRefGoogle ScholarPubMed
Espinoza, B, Tarrab-Hazdai, R, Silman, I, and Arnon, R (1988) Acetylcholinesterase in Schistosoma mansoni is anchored to the membrane via covalently attached phosphatidylinositol. Molecular and Biochemical Parasitology 29, 171179. https://doi.org/10.1016/0166-6851(88)90072-2.CrossRefGoogle Scholar
Espinoza, B, Silman, I, Arnon, R and Tarrab-Hazdai, R (1991) Phosphatidylinositol-specific phospholipase C induces biosynthesis of acetylcholinesterase via diacylglycerol in Schistosoma mansoni. European Journal of Biochemistry 195, 863870. https://doi.org/10.1111/j.1432-1033.1991.tb15776.x.CrossRefGoogle ScholarPubMed
Fantappie, MR, Freebern, WJ, Osman, A, LaDuca, J, Niles, EG, and LoVerde, PT (2001) Evaluation of Schistosoma mansoni retinoid X receptor (SmRXR1 and SmRXR2) activity and tissue distribution. Molecular and Biochemical Parasitology 115, 8799. https://doi.org/10.1016/s0166-6851(01)00274-2.CrossRefGoogle ScholarPubMed
Fantappié, MR, Bastos de Oliveira, FM, de Moraes Maciel, R, Rumjanek, FD, Wu, W and LoVerde, PT (2008a) Cloning of SmNCoA-62, a novel nuclear receptor co-activator from Schistosoma mansoni: Assembly of a complex with a SmRXR1/SmNR1 heterodimer, SmGCN5 and SmCBP1. International Journal for Parasitology 38, 11331347. https://doi.org/10.1016/j.ijpara.2008.02.003.CrossRefGoogle ScholarPubMed
Fantappié, MR, Furtado, DR, Rumjanek, FD and LoVerde, PT (2008b) A unique nuclear receptor direct repeat 17 (DR17) is present within the upstream region of Schistosoma mansoni female-specific p14 gene. Biochemical and Biophysical Research Communications 371, 689693. https://doi.org/10.1016/j.bbrc.2008.04.125CrossRefGoogle ScholarPubMed
Figliuolo da Paz, VR, Figueiredo-Vanzan, D and Dos Santos Pyrrho, A (2019) Interaction and involvement of cellular adhesion molecules in the pathogenesis of Schistosoma mansoni. Immunology Letters 206, 1118. https://doi.org/10.1016/j.imlet.2018.11.011.CrossRefGoogle Scholar
Forrester, SG, Warfel, PW and Pearce, EJ (2004) Tegumental expression of a novel type II receptor serine/threonine kinase (SmRK2) in Schistosoma mansoni. Molecular and Biochemical Parasitology 136, 149156. https://doi.org/10.1016/j.molbiopara.2004.03.007.CrossRefGoogle ScholarPubMed
Fredriksson, R, Lagerström, MC, Lundin, LG and Schiöth, HB (2003) The G-protein-coupled receptors in the human genome form five main families: phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology 63, 12561272. https://doi.org/10.1124/mol.63.6.1256.CrossRefGoogle ScholarPubMed
Freebern, WJ, Niles, EG and LoVerde, PT (1999a) RXR-2, a member of the retinoid x receptor family in Schistosoma mansoni. Gene 233, 3338. https://doi.org/10.1016/s0378-1119(99)00161-4.CrossRefGoogle ScholarPubMed
Freebern, WJ, Osman, A, Niles, EG, Christen, L and LoVerde, PT (1999b) Identification of a cDNA encoding a retinoid X receptor homologue from Schistosoma mansoni: Evidence for a role in female-specific gene expression. Journal of Biological Chemistry 274, 45774585. https://doi.org/10.1074/jbc.274.8.4577.CrossRefGoogle ScholarPubMed
Freitas, TC, Jung, E and Pearce, EJ (2007) TGF-beta signaling controls embryo development in the parasitic flatworm Schistosoma mansoni. PLOS Pathogens 3(4), e52. https://doi.org/10.1371/journal.ppat.0030052.CrossRefGoogle ScholarPubMed
Freitas, TC, Jung, E and Pearce, EJ (2009) A bone morphogenetic protein homologue in the parasitic flatworm, Schistosoma mansoni. International Journal for Parasitology 39, 281287. https://doi.org/10.1016/j.ijpara.2008.08.001.CrossRefGoogle ScholarPubMed
Frooninckx, L, Van Rompay, L, Temmerman, L, Van Sinay, E, Beets, I, Janssen, T, Husson, SJ and Schoofs, L (2012) Neuropeptide GPCRs in C. elegans. Frontiers in Endocrinology 3, 167. https://doi.org/10.3389/fendo.2012.00167.CrossRefGoogle Scholar
Fu, G, Wang, W and Luo, BH (2012) Overview: Structural biology of integrins. Methods in Molecular Biology 757, 8199. https://doi.org/10.1007/978-1-61779-166-6_7.CrossRefGoogle ScholarPubMed
García-Tobilla, P, Solórzano, SR, Salido-Guadarrama, I, González-Covarrubias, V, Morales-Montor, G, Díaz-Otañez, CE and Rodríguez-Dorantes, M (2016) SFRP1 repression in prostate cancer is triggered by two different epigenetic mechanisms. Gene 593, 292301. https://doi.org/10.1016/j.gene.2016.08.030.CrossRefGoogle ScholarPubMed
Gelmedin, V, Morel, M, Hahnel, S, Cailliau, K, Dissous, C and Grevelding, CG (2017) Evidence for integrin-Venus kinase receptor 1 alliance in the ovary of Schistosoma mansoni females controlling cell survival. PLOS Pathogens 13(1), e1006147. https://doi.org/10.1371/journal.ppat.1006147.CrossRefGoogle ScholarPubMed
Giannini, AL, Caride, EC, Braga, VM and Rumjanek, FD (1995) F-10 nuclear binding proteins of Schistosoma mansoni: Structural and functional features. Parasitology 110, 155161. https://doi.org/10.1017/s0031182000063915.CrossRefGoogle ScholarPubMed
Gouignard, N, Vanderstraete, M, Cailliau, K, Lescuyer, A, Browaeys, E and Dissous, C (2012) Schistosoma mansoni: Structural and biochemical characterization of two distinct Venus kinase receptors. Experimental Parasitology 132, 3239. https://doi.org/10.1016/j.exppara.2011.05.007.CrossRefGoogle ScholarPubMed
Grapa, CM, Mocan, T, Gonciar, D, Zdrehus, C, Mosteanu, O, Pop, T and Mocan, L (2019) Epidermal growth factor receptor and its role in pancreatic cancer treatment mediated by nanoparticles. International Journal of Nanomedicine 14, 96939706. https://doi.org/10.2147/ijn.S226628.CrossRefGoogle ScholarPubMed
Gurevich, EV, Gainetdinov, RR and Gurevich, VV (2016) G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacological Research 111, 116. https://doi.org/10.1016/j.phrs.2016.05.010.CrossRefGoogle ScholarPubMed
Hahnel, S, Quack, T, Parker-Manuel, SJ, Lu, Z, Vanderstraete, M, Morel, M, Dissous, C, Cailliau, K and Grevelding, CG (2014) Gonad RNA-specific qRT-PCR analyses identify genes with potential functions in schistosome reproduction such as SmFz1 and SmFGFRs. Frontiers in Genetics 5, 170. https://doi.org/10.3389/fgene.2014.00170.CrossRefGoogle ScholarPubMed
Hahnel, S, Wheeler, N, Lu, Z, Wangwiwatsin, A, McVeigh, P, Maule, A, Berriman, M, Day, T, Ribeiro, P and Grevelding, CG (2018) Tissue-specific transcriptome analyses provide new insights into GPCR signalling in adult Schistosoma mansoni. PLOS Pathogens 14(1), e1006718. https://doi.org/10.1371/journal.ppat.1006718.CrossRefGoogle ScholarPubMed
Halton, DW and Maule, AG (2004) Flatworm nerve-muscle: Structural and functional analysis. Canadian Journal of Zoology 82, 316333. https://doi.org/10.1139/z03-221.CrossRefGoogle Scholar
Hamdan, FF and Ribeiro, P (1999) Characterization of a stable form of tryptophan hydroxylase from the human parasite Schistosoma mansoni. Journal of Biological Chemistry 274, 2174621754. https://doi.org/10.1074/jbc.274.31.21746.CrossRefGoogle ScholarPubMed
Hamdan, FF, Abramovitz, M, Mousa, A, Xie, J, Durocher, Y and Ribeiro, P (2002) A novel Schistosoma mansoni G protein-coupled receptor is responsive to histamine. Molecular and Biochemical Parasitology 119, 7586. https://doi.org/10.1016/s0166-6851(01)00400-5.CrossRefGoogle ScholarPubMed
Hammouda, NA, Abou el Naga, IF, el Temsahi, MM and Sharaf, IA (1994) Schistosoma mansoni: A comparative study on two cercarial transformation methods. Journal of the Egyptian Society of Parasitology 24, 479486.Google ScholarPubMed
Harburger, DS and Calderwood, DA (2009) Integrin signalling at a glance. Journal of Cell Science 122, 159163. https://doi.org/10.1242/jcs.018093.CrossRefGoogle ScholarPubMed
Harder, A (2002) Chemotherapeutic approaches to schistosomes: Current knowledge and outlook. Parasitology Research 88, 395397. https://doi.org/10.1007/s00436-001-0588-x.CrossRefGoogle ScholarPubMed
Hata, A and Chen, YG (2016) TGF-β signaling from receptors to Smads. Cold Spring Harbor Perspectives in Biology 8(9): a022061. https://doi.org/10.1101/cshperspect.a022061.CrossRefGoogle ScholarPubMed
Hering, H and Sheng, M (2002) Direct interaction of Frizzled-1, -2, -4, and -7 with PDZ domains of PSD-95. FEBS Letters 521, 185189. https://doi.org/10.1016/s0014-5793(02)02831-4.CrossRefGoogle ScholarPubMed
Hill, CA, Sharan, S and Watts, VJ (2018) Genomics, GPCRs and new targets for the control of insect pests and vectors. Current Opinion in Insect Science 30, 99106. https://doi.org/10.1016/j.cois.2018.08.010.CrossRefGoogle ScholarPubMed
Hoffmann, KF, Davis, EM, Fischer, ER and Wynn, TA (2001) The guanine protein coupled receptor rhodopsin is developmentally regulated in the freeliving stages of Schistosoma mansoni. Molecular and Biochemical Parasitology 112, 113123. https://doi.org/10.1016/s0166-6851(00)00352-2.CrossRefGoogle ScholarPubMed
Hofmann, L and Palczewski, K (2015) The G protein-coupled receptor rhodopsin: A historical perspective. Methods in Molecular Biology 1271, 318. https://doi.org/10.1007/978-1-4939-2330-4_1.CrossRefGoogle Scholar
Hong, F, Pan, S, Guo, Y, Xu, P and Zhai, Y (2019) PPARs as nuclear receptors for nutrient and energy metabolism. Molecules 24:2545. https://doi.org/10.3390/molecules24142545CrossRefGoogle ScholarPubMed
Hu, R, Wu, W, Niles, EG and LoVerde, PT (2006a) Isolation and characterization of Schistosoma mansoni constitutive androstane receptor. Molecular and Biochemical Parasitology 148, 3143. https://doi.org/10.1016/j.molbiopara.2006.02.017.CrossRefGoogle ScholarPubMed
Hu, R, Niles, EG and LoVerde, PT (2006b) DNA binding and transactivation properties of the Schistosoma mansoni constitutive androstane receptor homologue. Molecular and Biochemical Parasitology 150, 174185. https://doi.org/10.1016/j.molbiopara.2006.07.011.CrossRefGoogle ScholarPubMed
Hu, R, Wu, W, Niles, EG and LoVerde, PT (2006c) SmTR2/4, a Schistosoma mansoni homologue of TR2/TR4 orphan nuclear receptor. International Journal for Parasitology 36, 11131122. https://doi.org/10.1016/j.ijpara.2006.06.003.CrossRefGoogle ScholarPubMed
Hynes, RO (2002) Integrins: Bidirectional, allosteric signaling machines. Cell 110, 673687. https://doi.org/10.1016/s0092-8674(02)00971-6.CrossRefGoogle ScholarPubMed
Jones, AK, Bentley, GN, Oliveros Parra, WG and Agnew, A (2002) Molecular characterization of an acetylcholinesterase implicated in the regulation of glucose scavenging by the parasite Schistosoma. The FASEB Journal 16, 441443. https://doi.org/10.1096/fj.01-0683fje.CrossRefGoogle ScholarPubMed
Kamara, IK, Thao, JT, Kaur, K, Wheeler, NJ and Chan, JD (2023) Annotation of G-protein coupled receptors in the genomes of parasitic blood flukes. microPublication Biology 2023, 10.17912/micropub.biology.000704. https://doi.org/10.17912/micropub.biology.000704.Google ScholarPubMed
Kapp, K, Knobloch, J, Schüssler, P, Sroka, S, Lammers, R, Kunz, W and Grevelding, CG (2004) The Schistosoma mansoni Src kinase TK3 is expressed in the gonads and likely involved in cytoskeletal organization. Molecular and Biochemical Parasitology 138, 171182. https://doi.org/10.1016/j.molbiopara.2004.07.010.CrossRefGoogle ScholarPubMed
Kaur, S, Jobling, S, Jones, CS, Noble, LR, Routledge, EJ and Lockyer, AE (2015) The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: implications for developing new model organisms. PLOS One 10(4), e0121259. https://doi.org/10.1371/journal.pone.0121259.CrossRefGoogle ScholarPubMed
Keramidas, A, Moorhouse, AJ, Pierce, KD, Schofield, PR and Barry, PH (2002) Cation-selective mutations in the M2 domain of the inhibitory glycine receptor channel reveal determinants of ion-charge selectivity. Journal of General Physiology 119, 393410. https://doi.org/10.1085/jgp.20028552.CrossRefGoogle ScholarPubMed
Khayath, N, Vicogne, J, Ahier, A, BenYounes, A, Konrad, C, Trolet, J, Viscogliosi, E, Brehm, K and Dissous, C (2007) Diversification of the insulin receptor family in the helminth parasite Schistosoma mansoni. The FEBS Journal 274, 659676. https://doi.org/10.1111/j.1742-4658.2006.05610.x.CrossRefGoogle ScholarPubMed
Kim, JJ, and Accili, D (2002) Signalling through IGF-I and insulin receptors: Where is the specificity. Growth Hormone & IGF Research 12, 8490. https://doi.org/10.1054/ghir.2002.0265.CrossRefGoogle ScholarPubMed
Knobloch, J, Rossi, A, Osman, A, LoVerde, PT, Klinkert, MQ and Grevelding, CG (2004) Cytological and biochemical evidence for a gonad-preferential interplay of SmFKBP12 and SmTbetaR-I in Schistosoma mansoni. Molecular and Biochemical Parasitology 138, 227236. https://doi.org/10.1016/j.molbiopara.2004.09.006.CrossRefGoogle ScholarPubMed
Knobloch, J, Beckmann, S, Burmeister, C, Quack, T and Grevelding, CG (2007) Tyrosine kinase and cooperative TGF beta signaling in the reproductive organs of Schistosoma mansoni. Experimental Parasitology 117, 318336. https://doi.org/10.1016/j.exppara.2007.04.006.CrossRefGoogle ScholarPubMed
Köhler, A and Hurt, E (2007) Exporting RNA from the nucleus to the cytoplasm. Nature Reviews Molecular Cell Biology 8, 761773. https://doi.org/10.1038/nrm2255.CrossRefGoogle ScholarPubMed
Kojetin, DJ, Matta-Camacho, E, Hughes, TS, Srinivasan, S, Nwachukwu, JC, Cavett, V, Nowak, J, Chalmers, MJ, Marciano, DP, Kamenecka, TM, Shulman, AI, Rance, M, Griffin, PR, Bruning, JB and Nettles, KW (2015) Structural mechanism for signal transduction in RXR nuclear receptor heterodimers. Nature Communications 6, 8013. https://doi.org/10.1038/ncomms9013.CrossRefGoogle ScholarPubMed
Kreshchenko, ND (2008) Functions of flatworm neuropeptides NPF, GYIRF and FMRF in course of pharyngeal regeneration of anterior body fragments of planarian, Girardia tigrina. Acta Biologica Hungarica 59, 199207. https://doi.org/10.1556/ABiol.59.2008.suppl.29.CrossRefGoogle ScholarPubMed
Kristiansen, K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: Molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacology & Therapeutics 103, 2180. https://doi.org/10.1016/j.pharmthera.2004.05.002.CrossRefGoogle ScholarPubMed
Kryszkowski, W and Boczek, T (2021) The G protein-coupled glutamate receptors as novel molecular targets in schizophrenia treatment - a narrative review. Journal of Clinical Medicine 10, 1475. https://doi.org/10.3390/jcm10071475.CrossRefGoogle Scholar
Kunz, W (2001) Schistosome male-female interaction: Induction of germ-cell differentiation. Trends in Parasitology 17, 227231. https://doi.org/10.1016/s1471-4922(01)01893-1.CrossRefGoogle ScholarPubMed
Lackner, DH and Bähler, J (2008) Translational control of gene expression from transcripts to transcriptomes. International Review of Cell and Molecular Biology 271, 199251. https://doi.org/10.1016/S1937-6448(08)01205-7.CrossRefGoogle ScholarPubMed
Lagerström, MC and Schiöth, HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nature Reviews Drug Discovery 7, 339357. https://doi.org/10.1038/nrd2518.CrossRefGoogle ScholarPubMed
Lazar, MA (2017) Maturing of the nuclear receptor family. Journal of Clinical Investigations 127, 11231125. https://doi.org/10.1172/JCI92949.CrossRefGoogle ScholarPubMed
Lee, J, Chong, T and Newmark, PA (2020) The esophageal gland mediates host immune evasion by the human parasite Schistosoma mansoni. Proceedings of the National Academy of Sciences 117, 1929919309. https://doi.org/10.1073/pnas.2006553117.CrossRefGoogle ScholarPubMed
Li, X, Weth, O, Haimann, M, Möscheid, MF, Huber, TS and Grevelding, CG (2024) Rhodopsin orphan GPCR20 interacts with neuropeptides and directs growth, sexual differentiation, and egg production in female Schistosoma mansoni. Microbiology Spectrum 12, 12:e0219323. https://doi.org/10.1128/spectrum.02193-23.Google ScholarPubMed
LoVerde, PT, Niles, EG, Osman, A and Wu, WJ (2004) Schistosoma mansoni male-female interactions. Canadian Journal of Zoology 82, 357374. https://cdnsciencepub.com/doi/10.1139/z03-217.CrossRefGoogle Scholar
LoVerde, PT, Osman, A and Hinck, A (2007) Schistosoma mansoni: TGF-beta signaling pathways. Experimental Parasitology 117, 304317. https://doi.org/10.1016/j.exppara.2007.06.002.CrossRefGoogle ScholarPubMed
Lu, C, Wu, W, Niles, EG and LoVerde, PT (2006) Identification and characterization of a novel fushi tarazu factor 1 (FTZ-F1) nuclear receptor in Schistosoma mansoni. Molecular and Biochemical Parasitology 150, 2536. https://doi.org/10.1016/j.molbiopara.2006.06.005.CrossRefGoogle ScholarPubMed
Lu, Z, Sessler, F, Holroyd, N, Hahnel, S, Quack, T, Berriman, M and Grevelding, CG (2016) Schistosome sex matters: A deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay. Scientific Reports 6, 31150. https://doi.org/10.1038/srep31150.CrossRefGoogle ScholarPubMed
Luttrell, LM (2008) Reviews in molecular biology and biotechnology: Transmembrane signaling by G protein-coupled receptors. Molecular Biotechnology 39, 239264. https://doi.org/10.1007/s12033-008-9031-1.CrossRefGoogle ScholarPubMed
MacDonald, K, Buxton, S, Kimber, MJ, Day, TA, Robertson, AP and Ribeiro, P (2014) Functional characterization of a novel family of acetylcholine-gated chloride channels in Schistosoma mansoni. PLOS Pathogens 10(6), e1004181. https://doi.org/10.1371/journal.ppat.1004181.CrossRefGoogle ScholarPubMed
MacDonald, K, Kimber, MJ, Day, TA and Ribeiro, P (2015) A constitutively active G protein-coupled acetylcholine receptor regulates motility of larval Schistosoma mansoni. Molecular and Biochemical Parasitology 202, 2937. https://doi.org/10.1016/j.molbiopara.2015.09.001.CrossRefGoogle ScholarPubMed
Mackmull, MT, Klaus, B, Heinze, I, Chokkalingam, M, Beyer, A, Russell, RB, Ori, A and Beck, M (2017) Landscape of nuclear transport receptor cargo specificity. Molecular Systems Biology 13, 962. https://doi.org/10.15252/msb.20177608.CrossRefGoogle ScholarPubMed
Maharjan, S, Kirk, RS, Lawton, SP and Walker, AJ (2023) Human growth factor mediated signalling through lipid rafts regulates stem cell proliferation, development and survival of Schistosoma mansoni. Open Biology 13, 230262. https://doi.org/10.1098/rsob.230262.Google Scholar
Mathavan, I, Liu, LJ, Robinson, SW, El-Sakkary, N, Elatico, AJJ, Gomez, D, Nellas, R, Owens, RJ, Zuercher, W, Navratilova, I, Caffrey, CR and Beis, K (2022) Identification of inhibitors of the Schistosoma mansoni VKR2 kinase domain. ACS Medicinal Chemistry Letters 13, 17151722. https://doi.org/10.1021/acsmedchemlett.2c00248.CrossRefGoogle ScholarPubMed
McGonigle, S, Beall, MJ, Feeney, EL and Pearce, EJ (2001) Conserved role for 14-3-3epsilon downstream of type I TGFbeta receptors. FEBS Letters 490, 6569. https://doi.org/10.1016/s0014-5793(01)02133-0.CrossRefGoogle ScholarPubMed
McGonigle, S, Beall, MJ and Pearce, EJ (2002) Eukaryotic initiation factor 2 alpha subunit associates with TGF beta receptors and 14-3-3 epsilon and acts as a modulator of the TGF beta response. Biochemistry 41, 579587. https://doi.org/10.1021/bi011407z.CrossRefGoogle ScholarPubMed
McKenzie, M, Kirk, RS and Walker, AJ (2018) Glucose uptake in the human pathogen Schistosoma mansoni is regulated through Akt/protein kinase B signaling. The Journal of Infectious Diseases 218, 152164. https://doi.org/10.1093/infdis/jix654.CrossRefGoogle ScholarPubMed
McVeigh, P, Mair, GR, Atkinson, L, Ladurner, P, Zamanian, M, Novozhilova, E, Marks, NJ, Day, TA and Maule, AG (2009) Discovery of multiple neuropeptide families in the phylum Platyhelminthes. International Journal for Parasitology 39, 12431252. https://doi.org/10.1016/j.ijpara.2009.03.005.CrossRefGoogle ScholarPubMed
Mendonça-Silva, DL, Pessôa, RF and Noël, F (2002) Evidence for the presence of glutamatergic receptors in adult Schistosoma mansoni. Biochemical Pharmacology 64, 13371344. https://doi.org/10.1016/s0006-2952(02)01358-8.CrossRefGoogle ScholarPubMed
Miao, Y and McCammon, JA (2016) G-protein coupled receptors: advances in simulation and drug discovery. Current Opinion in Structural Biology 41, 8389. https://doi.org/10.1016/j.sbi.2016.06.008.CrossRefGoogle Scholar
Mingot, JM, Bohnsack, MT, Jäkle, U and Görlich, D (2004) Exportin 7 defines a novel general nuclear export pathway. The EMBO Journal 23, 32273236. https://doi.org/10.1038/sj.emboj.7600338.CrossRefGoogle ScholarPubMed
Moescheid, MF, Lu, Z, Soria, CD, Quack, T, Puckelwaldt, O, Holroyd, N, Holzaepfel, P, Haeberlein, S, Rinaldi, G, Berriman, M and Grevelding, CG (2024) The retinoic acid family-like nuclear receptor SmRAR identified by single-cell transcriptomics of ovarian cells controls oocyte differentiation in Schistosoma mansoni. Nucleic Acids Research 16, gkae1228. https://doi.org/10.1093/nar/gkae1228.CrossRefGoogle Scholar
Mogahed, NMFH, El-Temsahy, MM, Abou-El-Naga, IF, Makled, S, Sheta, E and Ibrahim, EI (2023) Loading praziquantel within solid lipid nanoparticles improved its schistosomicidal efficacy against the juvenile stage. Experimental Parasitology 251, 108552. https://doi.org/10.1016/j.exppara.2023.108552.CrossRefGoogle ScholarPubMed
Morel, M, Vanderstraete, M, Cailliau, K, Lescuyer, A, Lancelot, J and Dissous, C (2014) Compound library screening identified Akt/PKB kinase pathway inhibitors as potential key molecules for the development of new chemotherapeutics against schistosomiasis. International Journal for Parasitology Drugs Drug Resistance 4, 256266. https://doi.org/10.1016/j.ijpddr.2014.09.004.CrossRefGoogle ScholarPubMed
Morrison, DD, Vande Waa, EA and Bennett, JL (1986) Effects of steroids and steroid synthesis inhibitors on fecundity of Schistosoma mansoni in vitro. Journal of Chemical Ecology 12, 19011908. https://doi.org/10.1007/BF01022391.CrossRefGoogle Scholar
Murphy, D, Dancis, B and Brown, JR (2008) The evolution of core proteins involved in microRNA biogenesis. BMC Evolutionary Biology 8, 92. https://doi.org/10.1186/1471-2148-8-92.CrossRefGoogle ScholarPubMed
Nirde, P, Torpier, G, De Reggi, ML and Capron, A (1983) Ecdysone and 20 hydroxyecdysone: new hormones for the human parasite Schistosoma mansoni. FEBS Letters 151, 223227. https://doi.org/10.1016/0014-5793(83)80074-x.CrossRefGoogle ScholarPubMed
Niswender, CM and Conn, PJ (2010) Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annual Review of Pharmacology and Toxicology 50, 295322. https://doi.org/10.1146/annurev.pharmtox.011008.145533.CrossRefGoogle ScholarPubMed
Nordström, KJ, Lagerström, MC, Wallér, LM, Fredriksson, R and Schiöth, HB (2009) The Secretin GPCRs descended from the family of Adhesion GPCRs. Molecular Biology and Evolution 26, 7184. doi: 10.1093/molbev/msn228.CrossRefGoogle ScholarPubMed
Novac, N and Heinzel, T (2004) Nuclear receptors: Overview and classification. Current Drug Targets - Inflammation and Allergy 3, 335346. https://doi.org/10.2174/1568010042634541.Google Scholar
Nuclear Receptors Nomenclature Committee (1999) A unified nomenclature system for the nuclear receptor superfamily. Cell 97, 161163. https://doi.org/10.1016/s0092-8674(00)80726-6.CrossRefGoogle Scholar
Nusse, R (2015) Cell signalling: Disarming Wnt. Nature 519, 163164. https://doi.org/10.1038/nature14208.CrossRefGoogle ScholarPubMed
Okada, C, Yamashita, E, Lee, SJ, Shibata, S, Katahira, J, Nakagawa, A, Yoneda, Y and Tsukihara, T (2009) A high-resolution structure of the pre-microRNA nuclear export machinery. Science 326, 12751279. https://doi.org/10.1126/science.1178705.CrossRefGoogle ScholarPubMed
Oliveira, KC, Carvalho, ML, Verjovski-Almeida, S and LoVerde, PT (2012) Effect of human TGF-β on the gene expression profile of Schistosoma mansoni adult worms. Molecular and Biochemical Parasitology 183, 132139. https://doi.org/10.1016/j.molbiopara.2012.02.008.CrossRefGoogle ScholarPubMed
Ornitz, DM and Itoh, N (2015) The fibroblast growth factor signaling pathway. Wiley Interdisciplinary Reviews: Developmental Biology 4, 215266. https://doi.org/10.1002/wdev.176.CrossRefGoogle ScholarPubMed
Osman, A, Niles, EG, and LoVerde, PT (2001) Identification and characterization of a Smad2 homologue from Schistosoma mansoni, a transforming growth factor-beta signal transducer. Journal of Biological Chemistry 276, 1007210082. https://doi.org/10.1074/jbc.M005933200.CrossRefGoogle ScholarPubMed
Osman, A, Niles, EG and LoVerde, PT (2004) Expression of functional Schistosoma mansoni Smad4: Role in Erk-mediated transforming growth factor beta (TGF-beta) down-regulation. Journal of Biological Chemistry 279, 64746486. https://doi.org/10.1074/jbc.M310949200.CrossRefGoogle ScholarPubMed
Osman, A, Niles, EG, Verjovski-Almeida, S and LoVerde, PT (2006) Schistosoma mansoni TGF-beta receptor II: Role in host ligand-induced regulation of a schistosome target gene. PLOS Pathogens PLoS Pathogen 2(6), e54. https://doi.org/10.1371/journal.ppat.0020054.CrossRefGoogle ScholarPubMed
Patel, SR and Skafar, DF (2015) Modulation of nuclear receptor activity by the F domain. Molecular and Cellular Endocrinology 418, 298305. https://doi.org/10.1016/j.mce.2015.07.009.CrossRefGoogle ScholarPubMed
Patocka, N and Ribeiro, P (2007) Characterization of a serotonin transporter in the parasitic flatworm, Schistosoma mansoni: Cloning, expression and functional analysis. Molecular and Biochemical Parasitology 154, 125133. https://doi.org/10.1016/j.molbiopara.2007.03.010.CrossRefGoogle ScholarPubMed
Patocka, N, Sharma, N, Rashid, M and Ribeiro, P (2014) Serotonin signaling in Schistosoma mansoni: A serotonin-activated G protein-coupled receptor controls parasite movement. PLOS Pathogens 10(1), e1003878. https://doi.org/10.1371/journal.ppat.1003878.CrossRefGoogle ScholarPubMed
Pawlak, M, Lefebvre, P and Staels, B (2012) General molecular biology and architecture of nuclear receptors. Current Topics in Medical Chemistry 12, 486504. https://doi.org/10.2174/156802612799436641.CrossRefGoogle ScholarPubMed
Phan, P, Liang, D, Zhao, M, Wyeth, RC, Fogarty, C, Duke, MG, McManus, DP, Wang, T and Cummins, SF (2022) Analysis of rhodopsin G protein-coupled receptor orthologs reveals semiochemical peptides for parasite (Schistosoma mansoni) and host (Biomphalaria glabrata) interplay. Scientific Reports 12, 8243. https://doi.org/10.1038/s41598-022-11996-x.CrossRefGoogle ScholarPubMed
Popiel, I, Cioli, D and Erasmus, DA (1984) The morphology and reproductive status of female Schistosoma mansoni following separation from male worms. International Journal for Parasitology 14:183–90. https://doi.org/10.1016/0020-7519(84)90047-xCrossRefGoogle ScholarPubMed
Protasio, AV, Tsai, IJ, Babbage, A, Nichol, S, Hunt, M, Aslett, MA, De Silva, N, Velarde, GS, Anderson, TJ, Clark, RC, Davidson, C, Dillon, GP, Holroyd, NE, LoVerde, PT, Lloyd, C, McQuillan, J, Oliveira, G, Otto, TD, Parker-Manuel, SJ, Quail, MA, Wilson, RA, Zerlotini, A, Dunne, DW and Berriman, M (2012) A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLOS Neglected Tropical Diseases 6(1), e1455. https://doi.org/10.1371/journal.pntd.0001455.CrossRefGoogle ScholarPubMed
Pyne, NJ and Pyne, S (2011) Receptor tyrosine kinase-G-protein-coupled receptor signalling platforms: Out of the shadow? Trends in Pharmacological Sciences 32, 443450. https://doi.org/10.1016/j.tips.2011.04.002.CrossRefGoogle ScholarPubMed
Ramachandran, H, Skelly, PJ and Shoemaker, CB (1996) The Schistosoma mansoni epidermal growth factor receptor homologue, SER, has tyrosine kinase activity and is localized in adult muscle. Molecular and Biochemical Parasitology 83, 110. https://doi.org/10.1016/s0166-6851(96)02731-4.CrossRefGoogle ScholarPubMed
Reiner, A and Levitz, J (2018) Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron 98, 10801098. https://doi.org/10.1016/j.neuron.2018.05.018.CrossRefGoogle ScholarPubMed
Ressurreição, M, Elbeyioglu, F, Kirk, RS, Rollinson, D, Emery, AM, Page, NM and Walker, AJ (2016) Molecular characterization of host-parasite cell signalling in Schistosoma mansoni during early development. Scientific Reports 6, 35614. https://doi.org/10.1038/srep35614.CrossRefGoogle ScholarPubMed
Ribeiro, P and Geary, T (2010) Neuronal signaling in schistosomes: Current status and prospects for postgenomics. Canadian Journal of Zoology 88, 122. https://doi.org/10.1139/Z09-126.CrossRefGoogle Scholar
Ribeiro, P and Patocka, N (2013) Neurotransmitter transporters in schistosomes: Structure, function and prospects for drug discovery. Parasitology International 62, 629638. https://doi.org/10.1016/j.parint.2013.06.003.CrossRefGoogle ScholarPubMed
Ribeiro, P, Gupta, V and El-Sakkary, N (2012) Biogenic amines and the control of neuromuscular signaling in schistosomes. Invertebrate Neuroscience 12, 1328. https://doi.org/10.1007/s10158-012-0132-y.CrossRefGoogle ScholarPubMed
Robb, SM, Ross, E and Sánchez Alvarado, A (2008) SmedGD: The Schmidtea mediterranea genome database. Nucleic Acids Research 36, D599606. https://doi.org/10.1093/nar/gkm684.CrossRefGoogle ScholarPubMed
Romero, AA, Cobb, SA, Collins, JNR, Kliewer, SA, Mangelsdorf, DJ and Collins, JJ III (2021) The Schistosoma mansoni nuclear receptor FTZ-F1 maintains esophageal gland function via transcriptional regulation of meg-8.3. PLOS Pathogens 17(12), e1010140. https://doi.org/10.1371/journal.ppat.1010140.CrossRefGoogle Scholar
Saito, A, Horie, M and Nagase, T (2018) TGF-β signaling in lung health and disease. International Journal of Molecular Science 19, 2460. https://doi.org/10.3390/ijms19082460.CrossRefGoogle ScholarPubMed
Salter, JP, Lim, KC, Hansell, E, Hsieh, I, and McKerrow, JH (2000) Schistosome invasion of human skin and degradation of dermal elastin are mediated by a single serine protease. Journal of Biological Chemistry 275, 3866738673. https://doi.org/10.1074/jbc.M006997200.CrossRefGoogle ScholarPubMed
Samoil, V, Dagenais, M, Ganapathy, V, Aldridge, J, Glebov, A, Jardim, A and Ribeiro, P (2018) Vesicle-based secretion in schistosomes: Analysis of protein and microRNA (miRNA) content of exosome-like vesicles derived from Schistosoma mansoni. Scientific Reports 8, 3286. https://doi.org/10.1038/s41598-018-21587-4.CrossRefGoogle ScholarPubMed
Schote, AB (2007) Nuclear Receptors: Variants and Their Role in Neuro-Endocrine-Immune Regulations. PhD dissertation, University of Trier and the Institute of Immunology, National Laboratory of Health, Luxembourg. Available at https://ubt.opus.hbz-nrw.de/opus45-ubtr/frontdoor/deliver/index/docId/326/file/Thesis_ASF_FINALEDRUCK_HQ.pdf (accessed April 3, 2024).Google Scholar
Severinghaus, AE (1928) Sex studies on Schistosoma japonicum. Quarterly Journal of Microscopical Science 71, 653702. https://doi.org/10.1242/jcs.s2-71.284.653.Google Scholar
Shaker, Y, Samy, N and Ashour, E (2014) Hepatobiliary schistosomiasis. Journal of Clinical and Translational Hepatology 2, 212216. https://doi.org/10.14218/JCTH.2014.00018.Google ScholarPubMed
Shiff, CJ and Dossaji, SF (1991) Ecdysteroids as regulators of host and parasite interactions: A study of interrelationships between Schistosoma mansoni and the host snail, Biomphalaria glabrata. Tropical Medicine and Parasitology 42, 1116.Google ScholarPubMed
Shoemaker, CB, Ramachandran, H, Landa, A, dos Reis, MG and Stein, LD (1992) Alternative splicing of the Schistosoma mansoni gene encoding a homologue of epidermal growth factor receptor. Molecular and Biochemical Parasitology 53, 1732. https://doi.org/10.1016/0166-6851(92)90003-3.CrossRefGoogle ScholarPubMed
Simons, SS Jr, Edwards, DP and Kumar, R (2014) Minireview: Dynamic structures of nuclear hormone receptors: New promises and challenges. Molecular Endocrinology 28, 173182. https://doi.org/10.1210/me.2013-1334.CrossRefGoogle Scholar
Skelly, PJ and Shoemaker, CB (1996) Rapid appearance and asymmetric distribution of glucose transporter SGTP4 at the apical surface of intramammalian-stage Schistosoma mansoni. Proceedings of the National Academy of Sciences of the United States of America 93, 36423646. https://doi.org/10.1073/pnas.93.8.3642.CrossRefGoogle ScholarPubMed
Skelly, PJ, Da’dara, AA, Li, XH, Castro-Borges, W and Wilson, RA (2014) Schistosome feeding and regurgitation. PLOS Pathogens 10, e1004246. https://doi.org/10.1371/journal.ppat.1004246.CrossRefGoogle ScholarPubMed
Stone, WL, Leavitt, L and Varacallo, M (2023) Physiology, growth factor. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK442024/.Google Scholar
Sundaraneedi, MK, Tedla, BA, Eichenberger, RM, Becker, L, Pickering, D, Smout, MJ, Rajan, S, Wangchuk, P, Keene, FR, Loukas, A, Collins, JG and Pearson, MS (2017) Polypyridylruthenium(II) complexes exert antischistosome activity and inhibit parasite acetylcholinesterases. PLOS Neglected Tropical Diseases 11(12), e0006134. https://doi.org/10.1371/journal.pntd.0006134.CrossRefGoogle ScholarPubMed
Taft, AS, Norante, FA and Yoshino, TP (2010) The identification of inhibitors of Schistosoma mansoni miracidial transformation by incorporating a medium-throughput small-molecule screen. Experimental Parasitology 125, 8494. https://doi.org/10.1016/j.exppara.2009.12.021.CrossRefGoogle ScholarPubMed
Taman, A and Ribeiro, P (2009) Investigation of a dopamine receptor in Schistosoma mansoni: functional studies and immunolocalization. Molecular and Biochemical Parasitology 168, 2433. https://doi.org/10.1016/j.molbiopara.2009.06.003.CrossRefGoogle ScholarPubMed
Taman, A and Ribeiro, P (2011a) Glutamate-mediated signaling in Schistosoma mansoni: A novel glutamate receptor is expressed in neurons and the female reproductive tract. Molecular and Biochemical Parasitology 176, 4250. https://doi.org/10.1016/j.molbiopara.2010.12.001.CrossRefGoogle ScholarPubMed
Taman, A and Ribeiro, P (2011b) Characterization of a truncated metabotropic glutamate receptor in a primitive metazoan, the parasitic flatworm Schistosoma mansoni. PLOS ONE 6(11), e27119. https://doi.org/10.1371/journal.pone.0027119.CrossRefGoogle Scholar
The Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium (2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460, 345351. https://doi.org/10.1038/nature08140.CrossRefGoogle Scholar
Tobin, AB, Butcher, AJ and Kong, KC (2008) Location, location, location…site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends in Pharmacological Sciences 29, 413420. https://doi.org/10.1016/j.tips.2008.05.006.CrossRefGoogle ScholarPubMed
Tran, EJ, King, MC and Corbett, AH (2014) Macromolecular transport between the nucleus and the cytoplasm: Advances in mechanism and emerging links to disease. Biochimica et Biophysica Acta 1843, 27842795. https://doi.org/10.1016/j.bbamcr.2014.08.003.CrossRefGoogle ScholarPubMed
Vanderstraete, M, Gouignard, N, Ahier, A, Morel, M, Vicogne, J and Dissous, C (2013) The Venus kinase receptor (VKR) family: Structure and evolution. BMC Genomics 14, 361. https://doi.org/10.1186/1471-2164-14-361.CrossRefGoogle ScholarPubMed
Vanderstraete, M, Gouignard, N, Cailliau, K, Morel, M, Hahnel, S, Leutner, S, Beckmann, S, Grevelding, CG and Dissous, C (2014) Venus kinase receptors control reproduction in the platyhelminth parasite Schistosoma mansoni. PLOS Pathogens 10(5), e1004138. https://doi.org/10.1371/journal.ppat.1004138.CrossRefGoogle ScholarPubMed
Verjovski-Almeida, S, DeMarco, R, Martins, EA, Guimarães, PE, Ojopi, EP, Paquola, AC, Piazza, JP, Nishiyama, MY Jr, Kitajima, JP, Adamson, RE, Ashton, PD, Bonaldo, MF, Coulson, PS, Dillon, GP, Farias, LP, Gregorio, SP, Ho, PL, Leite, RA, Malaquias, LC, Marques, RC, Miyasato, PA, Nascimento, AL, Ohlweiler, FP, Reis, EM, Ribeiro, MA, , RG, Stukart, GC, Soares, MB, Gargioni, C, Kawano, T, Rodrigues, V, Madeira, AM, Wilson, RA, Menck, CF, Setubal, JC, Leite, LC and Dias-Neto, E (2003) Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni. Nature Genetics 35, 148157. https://doi.org/10.1038/ng1237.CrossRefGoogle ScholarPubMed
Vicogne, J, Pin, JP, Lardans, V, Capron, M, Noël, C and Dissous, C (2003) An unusual receptor tyrosine kinase of Schistosoma mansoni contains a Venus Flytrap module. Molecular and Biochemical Parasitology 126, 5162. https://doi.org/10.1016/s0166-6851(02)00249-9.CrossRefGoogle ScholarPubMed
Vicogne, J, Cailliau, K, Tulasne, D, Browaeys, E, Yan, YT, Fafeur, V, Vilain, JP, Legrand, D, Trolet, J and Dissous, C (2004) Conservation of epidermal growth factor receptor function in the human parasitic helminth Schistosoma mansoni. Journal of Biological Chemistry 27, 3740737414. https://doi.org/10.1074/jbc.M313738200.CrossRefGoogle Scholar
Vogeler, S, Galloway, TS, Lyons, BP and Bean, TP (2014) The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group. BMC Genomics 15, 369. https://doi.org/10.1186/1471-2164-15-369.CrossRefGoogle ScholarPubMed
von Lichtenberg, E (1987) Consequences of infections with schistosomes. In Rollinson, D and Simpson, AJG (eds), The Biology of Schistosomes: From Genes to Latrines. London: Academic Press, 185232.Google Scholar
Walker, AJ (2011) Insights into the functional biology of schistosomes. Parasites and Vectors 4, 203. https://doi.org/10.1186/1756-3305-4-203.CrossRefGoogle ScholarPubMed
Wang, B, Collins, JJ III and Newmark, PA (2013) Functional genomic characterization of neoblast-like stem cells in larval Schistosoma mansoni. Elife 2, e00768. https://doi.org/10.7554/eLife.00768.CrossRefGoogle ScholarPubMed
Wang, S, Luo, X, Zhang, S, Yin, C, Dou, Y and Cai, X (2014) Identification of putative insulin-like peptides and components of insulin signaling pathways in parasitic platyhelminths by the use of genome-wide screening. The FEBS Journal 281, 877893. https://doi.org/10.1111/febs.12655.CrossRefGoogle ScholarPubMed
Wang, J, Chen, R and Collins, JJ III (2019) Systematically improved in vitro culture conditions reveal new insights into the reproductive biology of the human parasite Schistosoma mansoni. PLOS Biology 17(5), e3000254. https://doi.org/10.1371/journal.pbio.3000254.CrossRefGoogle ScholarPubMed
Wang, X, Cheng, S, Chen, X, Zhang, W, Xie, Y, Liu, W, You, Y, Yi, C, Zhu, B, Gu, M, Xu, B, Lu, Y, Wang, J and Hu, W (2022) A metabotropic glutamate receptor affects the growth and development of Schistosoma japonicum. Frontiers in Microbiology 13, 1045490. https://doi.org/10.3389/fmicb.2022.1045490.CrossRefGoogle ScholarPubMed
Weikum, ER, Liu, X and Ortlund, EA (2018) The nuclear receptor superfamily: A structural perspective. Protein Science 27, 18761892. https://doi.org/10.1002/pro.3496.CrossRefGoogle ScholarPubMed
Weis, WI and Kobilka, BK (2018) The molecular basis of G protein-coupled receptor activation. Annual Review of Biochemistry 87, 897919. https://doi.org/10.1146/annurev-biochem-060614-033910.CrossRefGoogle ScholarPubMed
Wendt, GR and Collins, JJ III (2016) Schistosomiasis as a disease of stem cells. Current Opinion in Genetics and Development 40, 95102. https://doi.org/10.1016/j.gde.2016.06.010.Google ScholarPubMed
Wendt, G, Zhao, L, Chen, R, Liu, C, O’Donoghue, AJ, Caffrey, CR, Reese, ML and Collins, JJ (2020) A single-cell RNA-seq atlas of Schistosoma mansoni identifies a key regulator of blood feeding. Science 369, 16441649. https://doi.org/10.1126/science.abb7709.CrossRefGoogle ScholarPubMed
World Health Organization (2024) Schistosomiasis (Bilharzia). Geneva: WHO. Available at https://www.who.int/health-topics/schistosomiasis#tab=tab_1 (accessed April 3, 2024).Google Scholar
WormBase ParaSite (2024) Schistosoma mansoni. Available at https://parasite.wormbase.org/Schistosoma_mansoni_prjea36577/Info/Index/ (accessed December 20, 2024).Google Scholar
Wu, K, Huang, S, Zhao, Y, Umar, A, Chen, H, Yu, Z and Huang, J (2024) Hepatocyte nuclear factor 4 located in different developmental stages in Schistosoma japonicum and involved in important metabolic pathways. Biomedical Journal 13, 100726. https://doi.org/10.1016/j.bj.2024.100726.Google Scholar
Wu, W and LoVerde, PT (2008) Schistosoma mansoni: Identification of SmNR4A, a member of nuclear receptor subfamily 4. Experimental Parasitology 120, 208213. https://doi.org/10.1016/j.exppara.2008.07.005.CrossRefGoogle ScholarPubMed
Wu, W and LoVerde, PT (2011) Nuclear hormone receptors in parasitic helminths. Molecular and Cellular Endocrinology 334, 5666. https://doi.org/10.1016/j.mce.2010.06.011.CrossRefGoogle ScholarPubMed
Wu, W and LoVerde, PT (2019) Nuclear hormone receptors in parasitic Platyhelminths. Molecular and Biochemical Parasitology 233, 111218. https://doi.org/10.1016/j.molbiopara.2019.111218.CrossRefGoogle ScholarPubMed
Wu, W and LoVerde, PT (2021) Identification and evolution of nuclear receptors in Platyhelminths. PLOS One 16(8), e0250750. https://doi.org/10.1371/journal.pone.0250750.CrossRefGoogle ScholarPubMed
Wu, W and LoVerde, PT (2023) Updated knowledge and a proposed nomenclature for nuclear receptors with two DNA binding domains (2DBD-NRs). PLOS One 18(9), e0286107. https://doi.org/10.1371/journal.pone.0286107.CrossRefGoogle Scholar
Wu, W, Niles, EG, El-Sayed, N, Berriman, M and LoVerde, PT (2006) Schistosoma mansoni (Platyhelminthes, Trematoda) nuclear receptors: Sixteen new members and a novel subfamily. Gene 366, 303315. https://doi.org/10.1016/j.gene.2005.09.013.CrossRefGoogle Scholar
Wu, W, Niles, EG, Hirai, H and LoVerde, PT (2007a) Evolution of a novel subfamily of nuclear receptors with members that each contain two DNA binding domains. BMC Evolutionary Biology 7, 27. https://doi.org/10.1186/1471-2148-7-27.CrossRefGoogle ScholarPubMed
Wu, W, Niles, EG and LoVerde, PT (2007b) Thyroid hormone receptor orthologues from invertebrate species with emphasis on Schistosoma mansoni. BMC Evolutionary Biology 7, 150. https://doi.org/10.1186/1471-2148-7-150.CrossRefGoogle ScholarPubMed
Wu, W, Niles, EG, Hirai, H and LoVerde, PT (2007c) Identification and characterization of a nuclear receptor subfamily I member in the Platyhelminth Schistosoma mansoni (SmNR1). The FEBS Journal 274, 390405. https://doi.org/10.1111/j.1742-4658.2006.05587.x.CrossRefGoogle ScholarPubMed
Wu, W, Tak, EY and LoVerde, PT (2008) Schistosoma mansoni: SmE78, a nuclear receptor orthologue of Drosophila ecdysone-induced protein 78. Experimental Parasitology 119, 313318. https://doi.org/10.1016/j.exppara.2008.03.001.CrossRefGoogle ScholarPubMed
Yang, Y, Guo, L, Chen, L, Gong, B, Jia, D and Sun, Q (2023) Nuclear transport proteins: Structure, function, and disease relevance. Signal Transduction and Targeted Therapy 8, 425. https://doi.org/10.1038/s41392-023-01649-4.CrossRefGoogle ScholarPubMed
You, H, Gobert, GN, Jones, MK, Zhang, W and McManus, DP (2011) Signalling pathways and the host-parasite relationship: Putative targets for control interventions against schistosomiasis: Signalling pathways and future anti-schistosome therapies. BioEssays 33, 203214. https://doi.org/10.1002/bies.201000077.CrossRefGoogle ScholarPubMed
You, H, Stephenson, RJ, Gobert, GN and McManus, DP (2014) Revisiting glucose uptake and metabolism in schistosomes: New molecular insights for improved schistosomiasis therapies. Frontiers in Genetics 5, 176. https://doi.org/10.3389/fgene.2014.00176.CrossRefGoogle ScholarPubMed
You, H, Gobert, GN, Cai, P, Mou, R, Nawaratna, S, Fang, G, Villinger, F and McManus, DP (2015) Suppression of the insulin receptors in adult Schistosoma japonicum impacts on parasite growth and development: Further evidence of vaccine potential. PLOS Neglected Tropical Diseases 9, e0003730. https://doi.org/10.1371/journal.pntd.0003730.CrossRefGoogle ScholarPubMed
You, H, Liu, C, Du, X, Nawaratna, S, Rivera, V, Harvie, M, Jones, M and McManus, DP (2018) Suppression of Schistosoma japonicum acetylcholinesterase affects parasite growth and development. International Journal of Molecular Sciences 19, 2426. https://doi.org/10.3390/ijms19082426.CrossRefGoogle ScholarPubMed
Younis, SS, Abou-El-Naga, IF and Radwan, KH (2023) Molluscicidal effect of green synthesized silver nanoparticles using Azadirachta indica on Biomphalaria alexandrina snails and Schistosoma mansoni cercariae. Asian Pacific Journal of Tropical Biomedicine 13, 3544. https://doi.org/10.4103/2221-1691.367688.CrossRefGoogle Scholar
Zamanian, M, Kimber, MJ, McVeigh, P, Carlson, SA, Maule, AG and Day, TA (2011) The repertoire of G protein-coupled receptors in the human parasite Schistosoma mansoni and the model organism Schmidtea mediterranea. BMC Genomics 12, 596. https://doi.org/10.1186/1471-2164-12-596.CrossRefGoogle ScholarPubMed
Zhang, Q, Zhang, S, Chen, J and Xie, Z (2023) The interplay between integrins and immune cells as a regulator in cancer immunology. International Journal of Molecular Sciences 24, 6170. https://doi.org/10.3390/ijms24076170.CrossRefGoogle ScholarPubMed
Zheng, L, Deng, L, Zhong, Y, Wang, Y, Guo, W and Fan, X (2021) Molluscicides against the snail-intermediate host of Schistosoma: A review. Parasitology Research 120, 33553393. https://doi.org/10.1007/s00436-021-07288-4.CrossRefGoogle ScholarPubMed