Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-02-10T21:52:18.473Z Has data issue: false hasContentIssue false

Synthetic camphor derivative (E)-2-((1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)amino)phenol: A novel anthelmintic drug candidate for visceral toxocariasis

Published online by Cambridge University Press:  10 February 2025

D.C. Rodrigues*
Affiliation:
Parasitology Laboratory, Faculty of Medicine, Federal University of Rio Grande, Rio Grande, Brazil
C.N. de Oliveira da Cunha
Affiliation:
Parasitology Laboratory, Faculty of Medicine, Federal University of Rio Grande, Rio Grande, Brazil
A.M. Faria
Affiliation:
Parasitology Laboratory, Faculty of Medicine, Federal University of Rio Grande, Rio Grande, Brazil
V.P. Panassolo
Affiliation:
Parasitology Laboratory, Faculty of Medicine, Federal University of Rio Grande, Rio Grande, Brazil
L.H.R. Martins
Affiliation:
Parasitology Laboratory, Faculty of Medicine, Federal University of Rio Grande, Rio Grande, Brazil
M.V.N. de Souza
Affiliation:
Synthesis Department, Institute of Drug Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
M.C.F.D. de Souza
Affiliation:
Sectoral Vivarium, Faculty of Medicine, Federal University of Rio Grande, Rio Grande, Brazil
L.S. Munhoz
Affiliation:
Sectoral Vivarium, Faculty of Medicine, Federal University of Rio Grande, Rio Grande, Brazil
L.F. da Costa de Avila
Affiliation:
Parasitology Laboratory, Faculty of Medicine, Federal University of Rio Grande, Rio Grande, Brazil
D.F. Ramos
Affiliation:
New Drug Development Laboratory, Faculty of Medicine, Federal University of Rio Grande, Rio Grande, Brazil
C.J. Scaini
Affiliation:
Parasitology Laboratory, Faculty of Medicine, Federal University of Rio Grande, Rio Grande, Brazil
*
Corresponding author: D.C. Rodrigues; Email: deboracrvet@gmail.com

Abstract

Human toxocariasis is a neglected parasitic disease with a global distribution, treated with current anthelmintics that have low to moderate efficacy, and requires the discovery of novel drugs. Camphor derivatives have antimicrobial properties against various pathogens such as fungi and bacteria. This study aimed to identify a camphor derivative with activity against Toxocara canis larvae and evaluate its cytotoxicity, in silico bioavailability, and in vivo activity in Swiss mice infected with this parasite. Three compounds were tested in vitro in duplicate at a concentration of 1.0 to 0.05 mg/mL in a microplate containing 100 T. canis larvae in RPMI-1640 medium incubated for 48 h at 37°C and 5% CO2. The compound (E)-2-((1,7,7-trimethylbicyclo [2.2.1] heptan-2-ylidene)amino)phenol (C2) presented a minimum larvicidal concentration (MLC) of 0.25 mg/mL and was selected for the subsequent steps. This compound showed 100% cell viability in MLC and adequate bioavailability in computational models. Two subsequent in vivo tests were performed on Swiss mice inoculated with 500 T. canis infective eggs through intragastric (IG) intubation, one at 10 days post-inoculation (n=5) and the other at 30 days post-inoculation (n=10). The selected compound (10 mg/kg, via IG) and two controls (albendazole, 40 mg/kg, IG and phosphate buffered saline 0,15M, pH 7,2, via IG) were used for this evaluation. The compound reduced the intensity of infection by 75.7% and 54.8% at 10 and 30 days post inoculation, respectively (p<0.05). The results of this study demonstrate that this compound has potential as an anthelmintic candidate for visceral toxocariasis treatment.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, PB and Victor, MM (2010) Camphor reaction with sodium borohydride: A strategy to study the stereochemistry of the reduction reaction. Quimica Nova 33(10), 22742278. doi:10.1590/s0100-40422010001000042.CrossRefGoogle Scholar
Ansar Ahmed, S, Gogal, RM and Walsh, JE (1994) A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: An alternative to [3H]thymidine incorporation assay. Journal of Immunology Methods 170(2), 211224. doi:10.1016/0022-1759(94)90396-4.CrossRefGoogle Scholar
Avila, LF, Conceição, FR, Telmo, PD, Dutra, GF, De Los Santos, DG, Martins, LHR, Berne, MEA, Da Silva, PEA, Scaini, CJ (2012) Saccharomyces boulardii reduces infection intensity of mice with toxocariasis. Veterinary Parasitology 187(1–2), 337340. doi:10.1016/j.vetpar.2012.01.002.CrossRefGoogle ScholarPubMed
Bowman, DD (2020) The anatomy of the third-stage larva of Toxocara canis and Toxocara cati. Advances in Parasitology 3961, https://doi.org/10.1016/bs.apar.2020.03.002.CrossRefGoogle ScholarPubMed
Barrera, MG, Leonardi, D, Bolmaro, RE, Echenique, CG, Olivieri, AC, Salomon, CJ and Lamas, MC (2010) In vivo evaluation of albendazole microspheres for the treatment of Toxocara canis Larva Migrans. European Journal of Pharmaceutics and Biopharmaceutics 75(3), 451–54. https://doi.org/10.1016/j.ejpb.2010.03.017.CrossRefGoogle ScholarPubMed
Bernardová, N, Jan, N, Petr, H, Chia-Kwung, F and Libuše, K (2024) Neurobehavioral disorders and pathological changes in the brain of mice are caused by chronic Toxocara canis larval invasion with low to moderate inoculum.” Acta Parasitologica 69, 17361748. https://doi.org/10.1007/s11686-024-00869-0.CrossRefGoogle ScholarPubMed
Chen, J, Liu, Q, Liu, GH, Wen-Bin, Z, Sung-Jong, H, Hiromu, S, Xing-Quan, Z, Hany, ME (2018) Toxocariasis: A silent threat with a progressive public health impact. Infectious Diseases Poverty 7(1). doi:10.1186/s40249-018-0437-0.CrossRefGoogle ScholarPubMed
Daina, A, Michielin, O and Zoete, V (2017) Swiss ADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Science Report 7(1):113. doi:10.1038/srep42717.CrossRefGoogle ScholarPubMed
Fan, CK, Holland, CV, Loxton, K and Barghouth, U (2015) Cerebral toxocariasis: Silent progression to neurodegenerative disorders? Clinical Microbiology Reviews 28(3), 663686. doi:10.1128/cmr.00106-14.CrossRefGoogle ScholarPubMed
Fazmiya, MJ, Sultana, A, Rahman, K, Heyat, MBB, Sumbul, , Akhtar, F, Khan, S, Appiah, SCY (2022) Current insights on bioactive molecules, antioxidant, anti-inflammatory, and other pharmacological activities of Cinnamomum camphora linn. Oxidative Medicine and Cellular Longevity 2022, 123. doi:10.1155/2022/9354555.CrossRefGoogle ScholarPubMed
Feng, X, Cao, S, Qiu, F and Zhang, B (2020) Traditional application and modern pharmacological research of Artemisia annua L. Pharmacology & Therapeutics 216:107650. doi:10.1016/j.pharmthera.2020.107650.CrossRefGoogle ScholarPubMed
Halford, B (2014) Reflections on ChemDraw. Chemical & Engineering News Archive 92(33), 2627. doi:10.1021/cen-09233-scitech1.CrossRefGoogle Scholar
Hsu, FL, Li, WH, Yu, CW, Hsieh, Y-C, Yang, Y-F, Liu, J-T, Shih, J, Chu, Y-J, Yen, P-L, Chang, S-T, Liao, VH-C. (2012) In vivo antioxidant activities of essential oils and their constituents from leaves of the Taiwanese cinnamomum osmophloeum. Journal of Agricultural and Food Chemistry 60(12), 30923097. doi:10.1021/jf2045284.CrossRefGoogle ScholarPubMed
Itako, AT, Schwan-Estrada, KR, Tolentino Júnior, JB, Stangarlin, JR and Cruz, ME (2008) Antifungal activity and protection of tomato plants by medicinal plant extracts. Tropical Plant Pathology 33(3), 241244. doi:10.1590/s1982-56762008000300011.CrossRefGoogle Scholar
Kang, NJ, Han, SC, Yoon, SH, Sim, JY, Maeng, YH, Kang, HK, Yoo, ES. (2019) Cinnamomum camphora leaves alleviate allergic skin inflammatory responses in vitro and in vivo. Toxicology Research 35(3), 279285. doi:10.5487/tr.2019.35.3.279.CrossRefGoogle ScholarPubMed
Lam, NS, Long, X, Su, X and Lu, F (2018) Artemisinin and its derivatives in treating helminthic infections beyond schistosomiasis. Pharmacological Research 133, 77100. doi:10.1016/j.phrs.2018.04.025.CrossRefGoogle ScholarPubMed
Lipinski, CA (2004) Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today 1(4), 337341. doi:10.1016/j.ddtec.2004.11.007.CrossRefGoogle ScholarPubMed
Magnaval, JF, Bouhsira, E and Fillaux, J (2022) Therapy and prevention for human toxocariasis. Microorganisms 10(2), 241. doi:10.3390/microorganisms10020241.CrossRefGoogle ScholarPubMed
Malabadi, RB, Kolkar, KP, Meti, TN and Chalannavar, RK (2021) Role of botanical essential oils as a therapy for controlling coronavirus (SARS-CoV-2) disease (Covid-19). International Journal of Research in Science and Innovation 08(04), 105118. doi:10.51244/ijrsi.2021.8407.Google Scholar
Mata-Santos, T, Pinto, NF, Mata-Santos, HA, De Moura, KG, Carneiro, PF, Carvalho, TS, Del Rio, KP, Pinto, MCFR, Martins, LHR, Fenalti, JM, Da Silva, PEA, Scaini, CJ (2015) Anthelmintic activity of lapachol, β-lapachone and its derivatives against Toxocara canis larvae. Revista do Instituto de Medicina Tropical de São Paulo 57(3), 197204. doi:10.1590/s0036-46652015000300003.CrossRefGoogle ScholarPubMed
Mata-Santos, T, Mata-Santos, HA, Carneiro, PF, De Moura, KCG, Fenalti, JM, Klafke, GB, Cruz, LAX, Martins, LHR, Pinto, NF, Pinto, MCFR, Berne, MEA, Da Silva, PEA, Scaini, CJ (2016a) Toxocara canis: Anthelmintic activity of quinone derivatives in murine toxocarosis. Parasitology 143(4), 507517. doi:10.1017/s0031182016000068.CrossRefGoogle ScholarPubMed
Mata-Santos, T, D’Oca, CD, Mata-Santos, HA, Fenalti, J, Pinto, N, Coelho, T, Berne, MEA, Da Silva, PEA, D’Oca, MGM, Scaini, CJ (2016b) Toxocara canis: Larvicidal activity of fatty acid amides. Bioorganic & Medicinal Chemistry Letters 26(3), 739741. doi:10.1016/j.bmcl.2016.01.002.CrossRefGoogle ScholarPubMed
Mighri, H, Hajlaoui, H, Akrout, A, Najjaa, H and Neffati, M (2010) Antimicrobial and antioxidant activities of Artemisia herba-alba essential oil cultivated in Tunisian arid zone. Comptes Rendus Chimie 13(3), 380386. doi:10.1016/j.crci.2009.09.008.CrossRefGoogle Scholar
Nicholas, W, Stewart, A and Mitchell, G (1984) Antibody responses to Toxocara canis using sera from parasite-infected mice and protection from toxocariasis by immunisation with ES antigens. Australian Journal of Experimental Biology and Medical Science 62(5), 619626. doi:10.1038/icb.1984.59.CrossRefGoogle ScholarPubMed
Ortiz-Pérez, E, Vázquez, K, Rivera, G, Salas, CO, Zarate-Ramos, JJ, Trofymchuk, OS, Hernandez-Soberanis, L, Perales-Flores, JD (2021) Natural and synthetic naphthoquinones as potential anti-infective agents. Current Topics in Medicinal Chemistry 21(22): 2046–69. doi:10.2174/1568026621666210915121348.CrossRefGoogle ScholarPubMed
Rodrigues, DC, Cunha, CNO, Mattos, GT, Martins, LHR, Nogueira, TCM, De Souza, MVN, De Avila, LFC, Ramos, DF, Scaini, CJ. (2024) Larvicidal activity of coumarin derivatives on Toxocara canis larvae, cytotoxicity analysis, and in silico bioavailability studies. Parasitology Research 123(6):246. doi:10.1007/s00436-024-08272-4.CrossRefGoogle ScholarPubMed
Satou, T, Horiuchi, A, Akao, N, Koike, K, Fujita, K and Nikaido, T (2005) Toxocara canis: Search for a potential drug amongst β-carboline alkaloids in vitro and mouse studies. Experimental Parasitology 110(2), 134139. doi:10.1016/j.exppara.2005.02.006.CrossRefGoogle ScholarPubMed
Savigny, DH (1975) In vitro maintenance of Toxocara canis larvae and a simple method for the production of Toxocara ES antigen for use in serodiagnostic tests for visceral larva migrans. Journal of Parasitology 61(4), 781. doi:10.2307/3279492.CrossRefGoogle Scholar
Scapin, CR, Carnelossi, PR, Vieira, RA, Schwan-Estrada, KR and Cruz, ME (2010) In vitro fungitoxicity of plant extracts on Exserohilum turcicum (Pass) Leonard & Suggs. Revista Brasileira de Plantas Medicinais 12(1), 5761. doi:10.1590/s1516-05722010000100009.CrossRefGoogle Scholar
Silva, E, Da Silva Araújo, A, Moraes, A, De Souza, L, Lourenço, MS, De Souza, MVN, Wardell, J, Wardell, S (2016) Synthesis and biological activities of camphor hydrazone and imine derivatives. Scientia Pharmaceutica 84(3):467483. doi:10.3390/scipharm84030467.CrossRefGoogle Scholar
Silva, ET, Da Silva Santos, L, De Andrade, GF, Rosa, EJ and De Souza, MV (2022) Camphor nitroimine: A key building block in unusual transformations and its applications in the synthesis of bioactive compounds. Molecular Diversity. 26(6): 3463–83. doi:10.1007/s11030-021-10341-0.CrossRefGoogle Scholar
Sinott, FA, Sena-Lopes, Â, Leal, KS, Thais, M, Cardoso, M, De Moura, MQ, Berne, MEA, Borsuk, S. (2019) Essential oil from Brazilian Red Propolis exhibits anthelmintic activity against larvae of Toxocara cati. Experimental Parasitology 200, 3741. doi:10.1016/j.exppara.2019.03.014.CrossRefGoogle ScholarPubMed
Stangarlin, JR, Franzener, G, Schwan-Estrada, KR and Cruz, ME (2003) Antifungal activity and induction of resistance in wheat to Bipolaris sorokiniana by Artemisia camphorata. Acta Scientiarum. Agronomy 25(2). doi:10.4025/actasciagron.v25i2.2124.Google Scholar
Strube, C, Heuer, L and Janecek, E (2013) Toxocara spp. infections in paratenic hosts. Veterinary Parasitology 193(4), 375389. doi:10.1016/j.vetpar.2012.12.033.CrossRefGoogle ScholarPubMed
Waindok, P, Janecek-Erfurth, E, Lindenwald, D, Wilk, E, Schughart, K, Geffers, R, Balas, L, Durand, T, Rund, KM, Schebb, NH, Strube, C (2019) Multiplex profiling of inflammation-related bioactive lipid mediators in Toxocara canis and Toxocara cati induced neurotoxocarosis. PLoS Neglected Tropical Diseases 13(9), e0007706. doi:10.1371/journal.pntd.0007706.CrossRefGoogle ScholarPubMed
Walcher, DL, Cruz, LA, de Lima Telmo, P, Martins, LHR, De Avila, LFC, Berne, MEA, Scaini, CJ (2017) Lactobacillus rhamnosus reduces parasite load on Toxocara canis experimental infection in mice, but has no effect on the parasite in vitro. Parasitology Research 117(2), 597602. doi:10.1007/s00436-017-5712-7.CrossRefGoogle ScholarPubMed
Xi, WG and Jin, LZ (1998) A novel method for the recovery of Toxocara canis in mice. Journal of Helminthology 72(2), 183184. doi:10.1017/s0022149x00016382.CrossRefGoogle ScholarPubMed