Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T21:38:23.907Z Has data issue: false hasContentIssue false

Urinary schistosomiasis on Zanzibar: application of two novel assays for the detection of excreted albumin and haemoglobin in urine

Published online by Cambridge University Press:  12 April 2024

D. Rollinson*
Affiliation:
Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
E.V. Klinger
Affiliation:
Department of Population and International Health, Harvard School of Public Health, Cambridge, MA 02138, USA
A.F. Mgeni
Affiliation:
Helminth Control Laboratory Unguja, Helminth Control Programme, Ministry of Health and Social Welfare, Zanzibar, Tanzania
I.S. Khamis
Affiliation:
Helminth Control Laboratory Unguja, Helminth Control Programme, Ministry of Health and Social Welfare, Zanzibar, Tanzania
J.R. Stothard
Affiliation:
Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5BD, UK Schistosomiasis Control Initiative, Department of Infectious Disease Epidemiology, Imperial College, London W2 1PG, UK
*
*Fax: + 44 207942 5518 E-mail: D.Rollinson@nhm.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As part of a urinary schistosomiasis control programme on Zanzibar, an aged cross-sectional survey of 305 children from three schools on Unguja was conducted to investigate the relationships between levels of excreted albumin and haemoglobin in urine and Schistosoma haematobium infection status. Diagnosis was determined by standard parasitological methods, dipstick reagents for microhaematuria, visual inspection for macrohaematuria as well as collection of case-history questionnaire data for self-diagnosis. Prevalence of infection as determined by parasitology was 53.9% and approximately, one quarter of the children examined were anaemic (<11 g dl−1). A statistically significant negative association of blood haemoglobin levels of boys and S. haematobium infection intensity status was observed (rs=−0.23, P=0.005). Through sensitivity analysis of urine-albumin values it was determined that a concentration of above >40 mg l−1, as measured with the HemoCue urine-albumin photometer, had sensitivity, specificity, positive and negative predictive values of 0.90, 0.83, 0.86 and 0.89 respectively against ‘gold-standard’ parasitology. There was a clear association of reported pain upon micturition for children with elevated urine-albumin levels, with an odds ratio of 20 to 1. Levels of excreted blood in urine were quantified with the HemoCue Plasma/Low Hb photometer. However, dipsticks remain the method of choice for urine-haemoglobin of 0.1 g l−1 and below. Urine parameters over a 24-h period were assessed in a small sub-sample. Reductions in both albumin and haemoglobin excretion were observed in 11 children 54 days after praziquantel treatment. It was concluded that these rapid, high-through-put, portable HemoCue assays could play a role in better describing and monitoring the occurrence, severity and evolution of urinary schistosomiasis disease. The urine-albumin assay has particular promise as a biochemical marker of S. haematobium induced kidney- and upper urinary tract-morbidity.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2005

References

Burki, A., Tanner, M., Burnier, E., Schweizer, W., Meudt, R. & Degremont, A. (1986) A comparison of ultrasonography, intravenous pyelography and cystoscopy in detection of urinary-tract lesions due to Schistosoma haematobium. Acta Tropica 43, 139151.Google ScholarPubMed
Chippaux, J.P., Campagne, G., Garba, A. & Vera, C. (2001) Rapid assessment indicators when monitoring schistosomiasis control. Bulletin de la Société de Pathologie Exotique 94, 3641.Google Scholar
Doehring, E., Ehrich, J.H.H. & Reider, F. (1986) Daily urinary protein loss in Schistosoma haematobium infection. American Journal of Tropical Medicine and Hygiene 35, 954958.CrossRefGoogle ScholarPubMed
Engels, D., Chitsulo, L., Montresor, A. & Savioli, L. (2002) The global epidemiological situation of schistosomiasis and new approaches to control and research. Acta Tropica 82, 139146.CrossRefGoogle ScholarPubMed
Forsyth, D.M. (1969) A longitudinal study of endemic urinary schistosomiasis in a small east African community. Bulletin of the World Health Organization 40, 771781.Google Scholar
King, C.H., Dickman, K. & Tisch, D.J. (2005) Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365, 15611569.CrossRefGoogle ScholarPubMed
Lwambo, N.J.S., Savioli, L., Kisumku, U.M., Alawi, K.S. & Bundy, D.A.P. (1997) The relationship between prevalence of Schistosoma haematobium infection and different morbidity indicators during the course of a control programme on Pemba island. Transactions of the Royal Society of Tropical Medicine and Hygiene 91, 643646.CrossRefGoogle ScholarPubMed
Reimert, C.M., Ouma, J.H., Mwanje, M.T., Magak, P., Poulsen, L.K., Vennervald, B.J., Christensen, N.O., Kharazmi, A. & Bendtzen, K. (1993) Indirect assessment of eosinophiluria in urinary schistosomiasis using eosinophil cationic protein (ECP) and eosinophil protein-x (EPX). Acta Tropica 54, 112.CrossRefGoogle ScholarPubMed
Richter, J. (2003) The impact of chemotherapy on morbidity due to schistosomiasis. Acta Tropica 86, 161183.CrossRefGoogle ScholarPubMed
Rollinson, D., Stothard, J.R. & Southgate, V.R. (2001) Interactions between intermediate snail hosts of the genus Bulinus and schistosomes of the Schistosoma haematobium group. Parasitology 123, S245S260.CrossRefGoogle ScholarPubMed
Stephenson, L. (1993) The impact of schistosomiasis on human nutrition. Parasitology 107, 107123.CrossRefGoogle ScholarPubMed
Stothard, J.R., Mgeni, A.F., Khamis, S., Kristensen, T.K., Hubbard, S.J., Seto, E., Ramsan, M. & Rollinson, D. (2002a) New insights into the transmission biology of urinary schistosomiasis in Zanzibar. Transactions of the Royal Society of Tropical Medicine and Hygiene 96, 470475.CrossRefGoogle ScholarPubMed
Stothard, J.R., Loxton, N.J. & Rollinson, D. (2002b) Freshwater snails on Mafia Island, Tanzania with special emphasis upon the genus Bulinus (Gastropoda: Planorbidae). Journal of Zoology 257, 353363.CrossRefGoogle Scholar
Stothard, J.R., Mgeni, A.F., Khamis, S., Seto, E., Ramsan, M. & Rollinson, D. (2002c) Urinary schistosomiasis in schoolchildren on Zanzibar Island (Unguja) Tanzania: a parasitological survey supplemented with questionnaires. Transactions of the Royal Society of Tropical Medicine and Hygiene 96, 507514.CrossRefGoogle ScholarPubMed
Vennervald, B.J., Kahama, A.I. & Reimert, C.M. (2000) Assessment of morbidity in Schistosoma haematobium infection: current methods and future tools. Acta Tropica 77, 8189.CrossRefGoogle Scholar
WHO (1991) Basic laboratory methods in medical parasitology . Geneva, World Health Organization.Google Scholar