Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T13:10:00.896Z Has data issue: false hasContentIssue false

Using lizards to evaluate the influence of average abundance on the variance of endoparasites in semiarid areas: dispersion and assemblage structure

Published online by Cambridge University Press:  22 January 2020

J.A. Araujo Filho*
Affiliation:
Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Departamento de Sistemática and Ecologia – DSE, Centro de Ciências Exatas and da Natureza – CCEN, Universidade Federal da Paraíba – UFPB, Cidade Universitária, Campus I, CEP 58059-900, João Pessoa, PB, Brazil
A.A.M. Teixeira
Affiliation:
Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Departamento de Sistemática and Ecologia – DSE, Centro de Ciências Exatas and da Natureza – CCEN, Universidade Federal da Paraíba – UFPB, Cidade Universitária, Campus I, CEP 58059-900, João Pessoa, PB, Brazil
D.A. Teles
Affiliation:
Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Departamento de Sistemática and Ecologia – DSE, Centro de Ciências Exatas and da Natureza – CCEN, Universidade Federal da Paraíba – UFPB, Cidade Universitária, Campus I, CEP 58059-900, João Pessoa, PB, Brazil
S.M. Rocha
Affiliation:
Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Departamento de Sistemática and Ecologia – DSE, Centro de Ciências Exatas and da Natureza – CCEN, Universidade Federal da Paraíba – UFPB, Cidade Universitária, Campus I, CEP 58059-900, João Pessoa, PB, Brazil
W.O. Almeida
Affiliation:
Departamento de Ciências Biológicas, Universidade Regional do Cariri – URCA, Rua Cel. Antônio Luiz, 1161, Campus Pimenta, CEP 63105-000, Crato, CE, Brazil
D.O. Mesquita
Affiliation:
Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Departamento de Sistemática and Ecologia – DSE, Centro de Ciências Exatas and da Natureza – CCEN, Universidade Federal da Paraíba – UFPB, Cidade Universitária, Campus I, CEP 58059-900, João Pessoa, PB, Brazil
A.C.F. Lacerda
Affiliation:
Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Departamento de Sistemática and Ecologia – DSE, Centro de Ciências Exatas and da Natureza – CCEN, Universidade Federal da Paraíba – UFPB, Cidade Universitária, Campus I, CEP 58059-900, João Pessoa, PB, Brazil
*
Author for correspondence: J.A. Araujo Filho, E-mail: araujofilhoaj@gmail.com

Abstract

The distribution of parasites within host populations and communities, and the mechanisms responsible for these patterns, are poorly understood aspects of wildlife parasitology. Here, we evaluate the influence of the average abundance of endoparasite variance, using endoparasites of lizards from the Caatinga domain (semiarid region), north-eastern Brazil. We hypothesized that, due to the high number of generalist endoparasite species, they may occur randomly throughout host populations in an aggregate pattern. In addition, we evaluated the degree to which sample variance is influenced by the average abundance of endoparasite species, patterns of co-occurrence and dominance among endoparasite species and similarities between abundance and the richness of endoparasite infracommunities in several host species. Between September 2015 and February 2016, 2141 lizards (1233 infected) from 16 species were collected from six Caatinga areas. In total, 25,687 endoparasites were collected, which belonged to 13 species including nematodes, pentastomids, cestodes, trematodes and acanthocephalans. Parasite–host associations documented here included 39 newly identified interactions. Endoparasites occurred in a typical aggregate pattern of distribution within their hosts; there was no measurable preference related to the acquisition of hosts by endoparasites. Despite the new records, endoparasites found were commonly associated with lizards in Caatinga environments, which may reflect fauna composed of generalist endoparasite species.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ab'Saber, AN (1974) O domínio morfoclimático semi-árido das Caatingas Brasileiras. Geomorfologia 43, 139.Google Scholar
Addinsoft (2004) XLstat for Excel, ver. 7.5. UK - Pentraeth, Anglesey, Computer program, website http://www.xlstat.com/en/. (accessed 20 january 2019).Google Scholar
Adjei, EL, Barnes, A and Lester, RJG (1986) A method for estimating possible parasite-related host mortality, illustrated using data from Callitetrarhynchus gracilis (Cestoda: Trypanorhyncha) in lizardfish (Saurida spp.). Parasitology 92, 227243.CrossRefGoogle Scholar
Almeida, W, Freire, E and Lopes, S (2008) A new species of Pentastomida infecting Tropidurus hispidus (Squamata: Tropiduridae) from caatinga in Northeastern Brazil. Brazilian Journal of Biology 68, 199203.CrossRefGoogle ScholarPubMed
Anderson, RC (2000) Nematode parasites of vertebrates: their development and transmission. 649 pp. Oxon, CABI.CrossRefGoogle Scholar
Anderson, RM and Gordon, DM (1982) Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology 85, 373398.CrossRefGoogle ScholarPubMed
Anderson, RM and May, RM (1979) Population biology of infectious diseases: part I. Nature 280, 361367.CrossRefGoogle ScholarPubMed
Andrade-Lima, D (1981) The caatingas dominium. Revista Brasileira de Botanica 4, 149153.Google Scholar
Anjos, LA, Almeida, WO, Vasconcellos, A, Freire, EM and Rocha, CF (2007) The alien and native pentastomids fauna of an exotic lizard population from Brazilian Northeast. Parasitology Research 101, 627628.CrossRefGoogle ScholarPubMed
Anjos, LA, Avila, RW, Ribeiro, SC, Almeida, WO and Silva, RJ (2012) Gastrointestinal nematodes of the lizard Tropidurus hispidus (Squamata: Tropiduridae) from a semi-arid region of north-eastern Brazil. Journal Helminthology 87, 443449.CrossRefGoogle ScholarPubMed
Araujo Filho, JA, Ribeiro, SC, Brito, SV, Teles, DA, Sousa, JG, Avila, RW and Almeida, WO (2014) Parasitic nematodes of Polychrus acutirostris (Polychrotidae) in the Caatinga biome, Northeastern Brazil. Brazilian Journal of Biology 74, 939942.CrossRefGoogle ScholarPubMed
Araujo Filho, JA, Brito, SV, Lima, VF, Pereira, AMA, Mesquita, DO, Albuquerque, RL and Almeida, WO (2017) Influence of temporal variation and host condition on helminth abundance in the lizard Tropidurus hispidus from north-eastern Brazil. Journal of Helminthology 91, 312319.CrossRefGoogle Scholar
Ávila, RW and Silva, RJ (2010) Checklist of helminths from lizards and amphisbaenians (Reptilia, Squamata) of South America. Journal of Venomous Animals and Toxins including Tropical Diseases 16, 543572.CrossRefGoogle Scholar
Ávila, RW, Anjos, LA, Ribeiro, SC, Morais, DH, Silva, RJ and Almeida, WO (2012) Nematodes of lizards (Reptilia: Squamata) from Caatinga biome, northeastern Brazil. Comparative Parasitology 79, 5663.CrossRefGoogle Scholar
Bain, O and Junker, K (2013) Trichospirura aethiopica n. sp. (Nematoda: Rhabdochonidae) from Malacomys longipes (Rodentia: Muridae) in Gabon, first record of the genus in the Ethiopian Realm. Parasite 20, 4.CrossRefGoogle ScholarPubMed
Barreto-Lima, AF, Toledo, GM and Anjos, LA (2012) The nematode community in the Atlantic rainforest lizard Enyalius perditus Jackson, 1978 from south-eastern Brazil. Journal of Helminthology 86, 395400.CrossRefGoogle Scholar
Betterton, C (1980) On the morphological variation of Euparadistomum species (Digenea: Dicrocoeliidae) from small mammals in Malaysia. Journal Helminthology 54, 241245.CrossRefGoogle ScholarPubMed
Bottomley, C, Isham, V and Basanez, MG (2005) Population biology of multispecies helminth infection: interspecific interactions and parasite distribution. Parasitology 131, 417433.CrossRefGoogle ScholarPubMed
Brito, SV, Corso, G, Almeida, AM, Ferreira, FS, Almeida, WO, Anjos, LA, Mesquita, DO and Vasconcellos, A (2014a) Phylogeny and micro-habitats utilized by lizards determine the composition of their endoparasites in the semiarid Caatinga of Northeast Brazil. Parasitology Research 113, 39633972.CrossRefGoogle Scholar
Brito, SV, Ferreira, FS, Ribeiro, SC, Anjos, LA, Almeida, WO, Mesquita, DO and Vasconcellos, V (2014b) Spatial-temporal variation of parasites in Cnemidophorus ocellifer (Teiidae) and Tropidurus hispidus and Tropidurus semitaeniatus (Tropiduridae) from Caatinga areas in northeastern Brazil. Parasitology Research 113, 11631169.CrossRefGoogle Scholar
Brooks, DR, León-Règagnon, V, McLennan, DA and Zelmer, D (2006) Ecological fitting as a determinant of the community structure of platyhelminth parasites of anurans. Ecology 87, 7685.CrossRefGoogle ScholarPubMed
Budischak, SA, Jolles, AE and Ezenwa, VO (2012) Direct and indirect costs of co-infection in the wild: linking gastrointestinal parasite communities, host hematology, and immune function. International Journal for Parasitology: Parasites and Wildlife 1, 212.Google ScholarPubMed
Bursey, CR, Goldberg, SR and Parmelee, JR (2005) Gastrointestinal helminths from 13 species of lizards from Reserva Cuzco Amazónico, Peru. Comparative Parasitology 72, 5068.CrossRefGoogle Scholar
Bush, AO, Lafferty, KD, Lotz, JM and Shostak, AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Cabral, ADN, Teles, DA, Brito, SV, Almeida, WO, Anjos, LA, Guarnieri, MC and Ribeiro, SC (2018) Helminth parasites of Mabuya arajara Reboucas-Spieker, 1981 (Lacertilia: Mabuyidae) from Chapada do Araripe, Northeastern Brazil. Parasitology Research 117, 11851193.CrossRefGoogle Scholar
Campião, KM, Morais, DH, Dias, OT, Aguiar, A, Toledo, GM, Tavares, LE and Silva, RJ (2014) Checklist of Helminth parasites of Amphibians from South America. Zootaxa 3843, 193.CrossRefGoogle ScholarPubMed
Combes, C (2001) Parasitism: the ecology and evolution of intimate interactions. 1rd edn. 522pp. Chicago, University of Chicago Press.Google Scholar
Costa, GC, Mesquita, DO, Colli, GR and Vitt, LJ (2008) Niche expansion and the niche variation hypothesis: does the degree of individual variation increase in depauperate assemblages? The American Naturalist 172, 868877.CrossRefGoogle ScholarPubMed
Crofton, HD (1971) A quantitative approach to parasitism. Parasitology 62, 179193.CrossRefGoogle Scholar
Delfino, MMS, Ribeiro, SC, Furtado, LP, Anjos, LA and Almeida, WO (2011) Pterygosomatidae and Trombiculidae mites infesting Tropidurus hispidus (Spix, 1825) (Tropiduridae) lizards in northeastern Brazil. Brazilian Journal of Biology 71, 549555.CrossRefGoogle ScholarPubMed
Esch, GW, Bush, AO and Aho, JM (1990) Parasite communities: patterns and processes. 1st edn. 327 pp. London, Chapman and Hall.Google Scholar
Galdino, CAB, Ávila, RW, Bezerra, CH, Passos, DC, Melo, GC and Zanchi, DS (2014) Helminths infection patterns in a lizard (Tropidurus hispidus) population from a semiarid neotropical area: associations between female reproductive allocation and parasite loads. Journal of Parasitology 100, 864867.CrossRefGoogle Scholar
Galvani, AP (2003) Immunity, antigenic heterogeneity, and aggregation of helminth parasites. The Journal of Parasitology 89, 232241.CrossRefGoogle ScholarPubMed
Goldberg, SR, Bursey, CR and Cheam, H (1998) Helminths of six species of Anolis lizards (Polychrotidae) from Hispaniola, West Indies. The Journal of Parasitology 84, 12911295.CrossRefGoogle ScholarPubMed
Goldberg, SR, Bursey, CR and Kraus, F (2016) Gastrointestinal helminths of two species of skinks: Emoia veracunda and Prasinohaema flavipes (Squamata: Scincidae) from Papua New Guinea. Comparative Parasitology 83, 269271.CrossRefGoogle Scholar
Gomes, FFA, Caldas, FLS, Santos, RA, Silva, BD, Santana, DO, Rocha, SM, Ferreira, AS and Faria, RG (2015) Patterns of space, time and trophic resource use by Tropidurus hispidus and T. semitaeniatus in an area of Caatinga, northeastern Brazil. The Herpetological Journal 25, 2739.Google Scholar
González, MT and Oliva, ME (2009) Is the nestedness of metazoan parasite assemblages of marine fishes from the southeastern Pacific coast a pattern associated with the geographical distributional range of the host? Parasitology 136, 401409.CrossRefGoogle Scholar
Gordon, DM and Rau, ME (1982) Possible evidence for mortality induced by the parasite Apatemon gracilis in a population of brook sticklebacks (Culaea inconstans). Parasitology 84, 4147.CrossRefGoogle Scholar
Gotelli, NJ and Rohde, K (2002) Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecology Letters 5, 8694.CrossRefGoogle Scholar
Gupta, N, Bhaskar, M and Guptar, DK (2009) Gastro-intestinal invasion in Hemidactylus flaviviridis with a new species of Parapharyngodon (Oxyuroidea: Pharyngodonidae). Zootaxa 2165, 3951.CrossRefGoogle Scholar
Hamann, MI, Kehr, AI and Gonzalez, CE (2006) Species affinity and infracommunity ordination of helminths of Leptodactylus chaquensis (Anura: Leptodactylidae) in two contrasting environments from northeastern Argentina. The Journal of Parasitology 92, 11711179.CrossRefGoogle ScholarPubMed
Harvey, PH, Colwell, RK, Silvertown, JW and May, RM (1983) Null models in ecology. Annual Review of Ecology and Systematics 14, 189211.CrossRefGoogle Scholar
Holmes, JC and Price, WP (1980) Parasites communities: the roles of phylogeny and ecology. Systematic Zoology 29, 203213.CrossRefGoogle Scholar
Holt, RD, Dobson, AP, Begon, M, Bowers, RG and Schauber, EM (2003) Parasite establishment in host communities. Ecology Letters 6, 837842.CrossRefGoogle Scholar
Jaenike, J (1996) Population-level consequences of parasite aggregation. Oikos 76, 155160.CrossRefGoogle Scholar
Janovy, J Jr and Kutish, GW (1988) A model of encounters between host and parasite populations. Journal of Theoretical Biology 134, 391401.CrossRefGoogle Scholar
Janovy, J Jr, Clopton, RE, Clopton, DA, Snyder, SC, Efting, A and Krebs, L (1995) Species density distributions as null models for ecologically significant interactions of parasites species in an assemblage. Ecological Modelling 77, 189196.CrossRefGoogle Scholar
Kelehear, C, Spratt, DM, Dubey, S, Brown, GP and Shine, R (2011) Using combined morphological, allometric and molecular approaches to identify species of the genus Raillietiella (Pentastomida). PloS One 6, e24936.CrossRefGoogle Scholar
Kelehear, C, Brown, GP and Shine, R (2012) Size and sex matter: infection dynamics of an invading parasite (the pentastome Raillietiella frenatus) in an invading host (the cane toad Rhinella marina). Parasitology 139, 15961604.CrossRefGoogle Scholar
King, CE (1964) Relative abundance of species and MacArthur's model. Ecology 45, 716727.CrossRefGoogle Scholar
Krasnov, BR, Stanko, M and Morand, S (2006) Are ectoparasite communities structured? Species co-occurrence, temporal variation and null models. Journal of Animal Ecology 75, 13301339.CrossRefGoogle ScholarPubMed
Lacerda, ACF, Bellay, S, Takemoto, RM and Pavanelli, GC (2013) Randomness of component communities of parasites of fish in a neotropical floodplain. Pan American Journal of Aquatic Sciences 8, 3950.Google Scholar
Lagrue, C, Poulin, R and Cohen, JE (2015) Parasitism alters three power laws of scaling in a metazoan community: Taylor's law, density-mass allometry, and variance-mass allometry. Proceedings of the National Academy of Sciences 112, 17911796.CrossRefGoogle Scholar
Leung, B (1998) Aggregated parasite distributions on hosts in a homogeneous environment: examining the Poisson null model. International Journal Parasitology 28, 17091712.CrossRefGoogle Scholar
Lima, VF, Brito, SV, Araujo Filho, JA, Teles, DA, Ribeiro, SC, Teixeira, AAM, Pereira, MA and Almeida, WO (2017) Helminth parasites of Phyllodactylidae and Gekkonidae lizards in a Caatinga ecological station, northeastern Brazil. Biota Neotropica 4, 1724.Google Scholar
Macedo, LC, Gardner, SL, Melo, FTV, Giese, EG and Santos, JN (2017) Nematodes parasites of teiid lizards from the Brazilian amazon rainforest. Journal of Parasitology 103, 176182.CrossRefGoogle ScholarPubMed
Magurran, AE (2013) Measuring biological diversity. 1rd edn. 256pp. Oxford, Blackwell Publishing.Google Scholar
May, RM and Anderson, RM (1979) Population biology of infectious diseases: part II. Nature 280, 455461.CrossRefGoogle ScholarPubMed
Moravec, F and Kaiser, H (1994) Trichospirura amphibiophila n. sp. (Nematoda: Rhabdochonidae) in the frog Eleutherodactylus martinicensis from La Desirade, French Antilles. The Journal of Parasitology 80, 121125.CrossRefGoogle ScholarPubMed
Mouillot, D, George-Nascimento, M and Poulin, R (2003) How parasites divide resources: a test of the niche apportionment hypothesis. Journal of Animal Ecology 72, 757764.CrossRefGoogle Scholar
Narayanan, E, Rao, S and Thontadaraya, T (1961) Effect of temperature and humidity on the rate of development of the immature stages of Apanteles angaleti Muesebeck (Braconidae: Hymenoptera). Proceedings of the National Academy of Sciences 28, 150163.Google Scholar
Oliveira, BHS, Teixeira, AAM, Queiroz, RNM, Araujo Filho, JA, Teles, DA, Brito, SV and Mesquita, DO (2017) Nematodes infecting Anotosaura vanzolinia (Squamata: Gymnophthalmidae) from Caatinga, northeastern Brazil. Acta Herpetologica 12, 103108.Google Scholar
Pacala, SW and Dobson, AP (1988) The relation between the number of parasites/host and host age: population dynamic causes and maximum likelihood estimation. Parasitology 96, 197210.CrossRefGoogle ScholarPubMed
Pietrock, M and Marcogliese, DJ (2003) Free-living endohelminth stages: at the mercy of environmental conditions. Trends in Parasitology 19, 293299.CrossRefGoogle ScholarPubMed
Poulin, R (1993) The disparity between observed and uniform distributions: a new look at parasite aggregation. International Journal for Parasitology 23, 937944.CrossRefGoogle Scholar
Poulin, R (1996) Richness, nestedness, and randomness in parasite infracommunity structure. Oecologia 105, 545551.CrossRefGoogle ScholarPubMed
Poulin, R (2007) Evolutionary ecology of parasites. 2nd edn. 342 pp. Princeton, Princeton University Press.Google Scholar
Poulin, R (2013) Explaining variability in parasite aggregation levels among host samples. Parasitology 140, 541546.CrossRefGoogle ScholarPubMed
Price, PW (1987) Evolution in parasite communities. International Journal for Parasitology 17, 209214.CrossRefGoogle ScholarPubMed
Quinnell, RJ (2003) Genetics of susceptibility to human helminth infection. International Journal for Parasitology 33, 12191231.CrossRefGoogle ScholarPubMed
R Core Team (2019) R: a language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. Available at https://www.R-project.org/. (Acessed 15 February 2019).Google Scholar
Ribeiro, SC, Ferreira, FS, Brito, SV, Teles, DA, Ávila, RW, Almeida, WO, Anjos, LA and Guarnieri, MC (2012) Pulmonary infection in two sympatric lizards, Mabuya arajara (Scincidae) and Anolis brasiliensis (Polychrotidae) from a cloud forest in Chapada do Araripe, Ceará, Northeastern Brazil. Brazilian Journal of Biology 72, 929933.CrossRefGoogle ScholarPubMed
Ribeiro, LB, Ferreira, ACS, Silva, DCN, Vieira, FM and Moura, GJB (2018) Helminth Parasites of the Lizard Nothobachia ablephara (Gymnophthalmidae) in Caatinga areas from the Sertão of Brazil. The Journal of Parasitology 104, 177182.CrossRefGoogle ScholarPubMed
Rodrigues, MT (2003) Herpetofauna da Caatinga. Ecologia e conservação da Caatinga 1, 181236.Google Scholar
Rolff, J (2000) Water mite parasitism in damselflies during emergence: two hosts, one pattern. Ecography 23, 273282.CrossRefGoogle Scholar
Rousset, F, Thomas, F, Meeus, T and Renaud, F (1996) Inference of parasite-induced host mortality from distributions of parasite loads. Ecology 77, 22032211.CrossRefGoogle Scholar
Rózsa, L, Reiczigel, J and Majoros, G (2000) Quantifying parasites in samples of hosts. The Journal of Parasitology 86, 228232.CrossRefGoogle ScholarPubMed
Rynkiewicz, EC, Pedersen, AB and Fenton, A (2015) An ecosystem approach to understanding and managing within-host parasite community dynamics. Trends in Parasitology 31, 212221.CrossRefGoogle ScholarPubMed
, IB, Riché, GR and Fotius, GA (2004) As paisagens e o processo de degradação do semi-árido nordestino. pp. 1736in Silva, JMC, Tabarelli, M, Fonseca, MT and Lins, LV (Eds) Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação. 1st edn.Brasília, Ministériodo Meio Ambiente/Universidade Federal de Pernambuco.Google Scholar
Schad, GA and Anderson, RM (1985) Predisposition to hookworm infection in humans. Science 228, 15371540.CrossRefGoogle ScholarPubMed
Shaw, DJ and Dobson, AP (1995) Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111, 111133.CrossRefGoogle ScholarPubMed
Sherrard-Smith, E, Perkins, SE, Chadwick, EA and Cable, J (2015) Spatial and seasonal factors are key determinants in the aggregation of helminths in their definitive hosts: Pseudamphistomum truncatum in otters (Lutra lutra). International Journal for Parasitology 45, 7583.CrossRefGoogle Scholar
Shostak, AW and Dick, TA (1987) Individual variability in reproductive success of Triaenophorus crassus Forel (Cestoda: Pseudophyllidea), with comments on use of the Lorenz curve and Gini coefficient. Canadian Journal of Zoology 65, 28782885.CrossRefGoogle Scholar
Sousa, JG, Brito, SV, Avila, RW, Teles, DA, Araujo Filho, JA, Teixeira, AAM, Anjos, LA and Almeida, WO (2014) Helminths and Pentastomida of two synanthropic gecko lizards, Hemidactylus mabouia and Phyllopezus pollicaris, in an urban area in Northeastern Brazil. Brazilian Journal of Biology 74, 943948.CrossRefGoogle Scholar
Taylor, L (1961) Aggregation, variance and the mean. Nature 189, 732735.CrossRefGoogle Scholar
Teixeira, AAM, Brito, SV, Teles, DA, Ribeiro, SC, Araujo Filho, JA, Lima, VF, Pereira, AMA and Almeida, WO (2017) Helminths of the lizard Salvator merianae (Squamata, Teiidae) in the Caatinga, Northeastern Brazil. Brazilian Journal of Biology 77, 312317.CrossRefGoogle ScholarPubMed
Teles, DA, Brito, SV, Teixeira, AAM, Ribeiro, SC, Araujo Filho, JA, Lima, VF, Pereira, AMA and Almeida, WO (2017) Nematodes associated with Iguana iguana (Linnaeus, 1758)(Squamata, Iguanidae) in Semi-arid areas of Northeastern Brazil. Brazilian Journal of Biology 77, 514518.CrossRefGoogle ScholarPubMed
Thomas, F, Guegan, JF, Renaud, F and Guegan, JF (2005) Parasitism and ecosystems.Oxford, Oxford University Press.CrossRefGoogle Scholar
Ulrich, W and Gotelli, NJ (2010) Null model analysis of species associations using abundance data. Ecology 9, 33843397.CrossRefGoogle Scholar
Ulrich, W and Gotelli, NJ (2013) Pattern detection in null model analysis. Oikos 122, 218.CrossRefGoogle Scholar
Vasconcellos, A, Andreazze, R, Almeida, AM, Araujo, HFP, Oliveira, E and Oliveira, U (2010) Seasonality of insects in the semi-arid Caatinga of Northeastern Brazil. Revista Brasileira de Entomologia 54, 471476.CrossRefGoogle Scholar
Velloso, AL, Sampaio, EVSB and Pareyn, FGC (2002) Ecorregioes propostas para o Bioma Caatinga. 1st edn. 71 pp. Recife, Associaçao Plantas do Nordeste, Instituto de Conservação Ambiental.Google Scholar
Vrcibradic, D, Rocha, CF, Bursey, CR and Vicente, JJ (2002) Helminth communities of two sympatric skinks (Mabuya agilis and Mabuya macrorhyncha) from two ‘restinga’ habitats in southeastern Brazil. Journal Helminthology 76, 355361.CrossRefGoogle ScholarPubMed
Wilson, K, Bjørnstad, ON, Dobson, AP, Merler, S, Poglayen, G, Randolph, SE, Read, AF and Skorping, A (2002) Heterogeneities in macroparasite infections: patterns and processes. The Ecology of Wildlife Diseases 44, 644.Google Scholar
Winemiller, KO and Pianka, ER (1990) Organization in natural assemblages of desert lizards and tropical fishes. Ecological Monographs 60, 2755.CrossRefGoogle Scholar