Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T19:05:10.081Z Has data issue: false hasContentIssue false

Why are the prevalence and diversity of helminths in the endemic Pyrenean brook newt Calotriton asper (Amphibia, Salamandridae) so low?

Published online by Cambridge University Press:  25 October 2013

M. Comas*
Affiliation:
Laboratory of Parasitology, Faculty of Pharmacy, University of Barcelona, Avda Diagonal s/n, 08028Barcelona, Spain
A. Ribas
Affiliation:
Laboratory of Parasitology, Faculty of Pharmacy, University of Barcelona, Avda Diagonal s/n, 08028Barcelona, Spain Museu de Granollers-Ciències Naturals, Francesc Macià 51, 08402Granollers, Spain

Abstract

A cornerstone in parasitology is why some species or populations are more parasitized than others. Here we examine the influence of host characteristics and habitat on parasite prevalence. We studied the helminths parasitizing the Pyrenean brook newt Calotriton asper (n= 167), paying special attention to the relationship between parasites and ecological factors such as habitat, sex, ontogeny, body size and age of the host. We detected two species of parasites, Megalobatrachonema terdentatum (Nematoda: Kathlaniidae) and Brachycoelium salamandrae (Trematoda: Brachycoeliidae), with a prevalence of 5.99% and 1.2%, respectively. Marginally significant differences were found in the prevalence between sexes, with females being more parasitized than males. The present results show significant differences in the body length of paedomorphic and metamorphic individuals, the former being smaller. Nevertheless, no significant correlations between parasite prevalence and either newt body length, ontogenetic stage or age were found. In comparison with other Salamandridae living in ponds, prevalence and diversity values were low. This may be due to a long hibernation period, the species' lotic habitat and its reophilous lifestyle, which probably do not allow for a high parasite load.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aho, J.M. (1990) Helminth communities of amphibians and reptiles: comparative approaches to understanding patterns and processes. pp. 157196in Esch, G.W., Bush, A.O. & Aho, J.M. (Eds) Parasite communities: patterns and processes. London, Chapman & Hall.Google Scholar
Akoll, P., Konecny, R., Mwanja, W.W. & Schiemer, F. (2011) Infection patterns of Nile tilapia (Oreochromis niloticus L.) by two helminth species with contrasting life styles. Parasitology Research 110, 14611472.Google Scholar
Avery, R.A. (1971) Helminth parasite populations in newts and their tadpoles. Freshwater Biology 1, 113119.CrossRefGoogle Scholar
Barus, V. & Groschaft, J. (1962) Helmintofauna colku Triturus alpestris (Laurenti, 1768) a Triturus vulgaris L. ze Sumavske Oblasti. Zoologicke Listy 11, 253264.Google Scholar
Barus, V., Groschaft, J. & Otcenasek, M. (1963) The helminth fauna of caudate amphibians from the territory of Czechoslovakia. Ceskoslovenská Parasitologie 10, 4359.Google Scholar
Baur, A. & Baur, B. (2005) Interpopulation variation in the prevalence and intensity of parasitic mite infection in the land snail Arianta arbustorum. Invertebrate Biology 124, 194201.Google Scholar
Berger, W.H. & Parker, F.L. (1970) Diversity of planktonic foraminifera in deep-sea sediments. Science 168, 13451347.Google Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Căpuşe, I. (1967) Contributions à l'étude de l'helminthofaune parasite de la Salamandra salamandra L. de la Roumanie. Travaux de Muséum d'histoire Naturelle ‘Grigore Antipa’ 7, 6569.Google Scholar
Carranza, S. & Amat, F. (2005) Taxonomy, biogeography and evolution of Euproctus (Amphibia: Salamandridae), with the resurrection of the genus Calotriton and the description of a new endemic species from the Iberian Peninsula. Zoological Journal of the Linnean Society 145, 555582.Google Scholar
Cheng, T.C. (1960) The life history of Brachycoelium obesum Nicoll, 1914, with a discussion of the systematic status of the trematode family Brachycoelliidae Johnston 1912. Journal of Parasitology 46, 464474.Google Scholar
Combes, C. & Knoepfler, L.-P. (1968) Euproctus montanus (Savi, 1838), amphibien uròdele endémique de Corse, hôte nouveau pour un acanthocéphale et un trématode digène. Vie et Milieu 19, 485489.Google Scholar
Dare, O.K. & Forbes, M.R. (2008) Rates of development in male and female wood frogs and patterns of parasitism by lung nematodes. Parasitology 135, 385.Google Scholar
Denoël, M. (2002) Paedomorphosis in the Alpine newt (Triturus alpestris): decoupling behavioural and morphological change. Behavioral Ecology and Sociobiology 52, 394399.Google Scholar
Denoël, M. (2004) Terrestrial versus aquatic foraging in juvenile Alpine newts (Triturus alpestris). Ecoscience 11, 404409.CrossRefGoogle Scholar
Denoël, M., Joly, P. & Whiteman, H.H. (2005) Evolutionary ecology of facultative paedomorphosis in newts and salamanders. Biological Reviews of the Cambridge Philosophical Society 80, 663671.CrossRefGoogle ScholarPubMed
Denoël, M., Ficetola, G.F., Ćirović, R., Radović, D., Džukić, G., Kalezić, M.L. & Vukov, T.D. (2009) A multi-scale approach to facultative paedomorphosis of European newts (Salamandridae) in the Montenegrin karst: Distribution pattern, environmental variables, and conservation. Biological Conservation 142, 509517.Google Scholar
Dobson, A. (2009) Climate variability, global change, immunity, and the dynamics of infectious diseases. Ecology 90, 920927.Google Scholar
Galeano, M., Navarro, P. & Lluch, J. (1990) Helmintofauna de Hyla spp. (Amphibia, Hylidae) en algunas localidades españolas. Miscellània Zoològica 14, 16.Google Scholar
García-París, M., Montori, A. & Herrero, P. (2004) Amphibia. Lissamphibia. Fauna Iberica Vol. 24. 639 pp. Madrid, Museo Nacional de Ciencias Naturales, Centro Superior de Investigaciones Científicas.Google Scholar
González, C.E. & Hamann, M.I. (2012) Seasonal occurrence of Cosmocerca podicipinus (Nematoda: Cosmocercidae) in Pseudopaludicola boliviana (Anura: Leiuperidae) from natural environments in Corrientes Province, Argentina and aspects of its population structure. Parasitology Research 111, 19231928.Google Scholar
Hamann, M.I., González, C.E. & Kehr, A.I. (2006) Helminth community structure of the oven frog Leptodactylus latinasus (Anura, Leptodactylidae) from Corrientes, Argentina. Acta Parasitologica 51, 294299.Google Scholar
Hamann, M.I., Kehr, A.I. & González, C.E. (2013) Biodiversity of trematodes associated with amphibians from a variety of habitats in Corrientes Province, Argentina. Journal of Helminthology 87, 286300.Google Scholar
Hartwich, G. (1960) Über Megalobatrachonema terdentatum (Linstow, 1890) nov. Comb. Und die Stellung von Megalobatrachonema Yamaguti 1941 im system der Ascaridina (Nematoda). Zeitschrift für Parasitenkunde 19, 606616.Google Scholar
Jordan, H.E. & Byrd, E.E. (1967) The life cycle of Brachycoelium mesorchium Byrd, 1937 (Trematoda: Digenea: Brachycoeliinae). Zeitschrift für Parasitenkunde 29, 6184.Google Scholar
Lafferty, K.D. (2009) The ecology of climate change and infectious diseases. Ecology 90, 888900.Google Scholar
López-Neyra, C.R. (1947) Helmintos de los vertebrados ibéricos. Vol. 1. 408 pp.Granada, Patronato Santiago Ramón y Cajal, CSIC.Google Scholar
Miaud, C. & Guillaume, O. (2005) Variation in age, body size, and growth among surface and cave-dwelling populations of the Pyrenean newt, Euproctus asper (Amphibia; Urodela). Herpetologica 61, 241249.CrossRefGoogle Scholar
Milá, B., Carranza, S., Guillaume, O. & Clobert, J. (2010) Marked genetic structuring and extreme dispersal limitation in the Pyrenean brook newt Calotriton asper (Amphibia: Salamandridae) revealed by genome-wide AFLP but not mtDNA. Molecular Ecology 19, 108120.Google Scholar
Montori, A. (1990) Skeletochronological results in the Pyrenean newt Euproctus asper (Dugès, 1852) from one prepyrenean population. Annales des Sciences Naturelles 11, 209211.Google Scholar
Paredes-Calderón, L., León-Regagnon, V. & García-Prieto, L. (2004) Helminth infracommunities of Rana vaillanti brocchi (Anura: Ranidae) in Los Tuxtlas, Veracruz, Mexico. Journal of Parasitology 90, 692696.Google Scholar
Petter, A.J. & Chabaud, A.G. (1971) Life-cycle of Megalobatrachonema terdentatum (Linstow) in France. Annales de Parasitologie Humaine et Comparee 46, 463477.Google Scholar
Poulin, R. (1997) Species richness of parasite assemblages: Evolution and patterns. Annual Review of Ecology and Systematics 28, 341358.Google Scholar
Ribas, A., Amat, F. & Veciana, M. (2010) Helmints paràsits de Salamandra salamandra al Parc Natural del Montseny. Trobada d'Estudiosos del Parc del Montseny 7, 367371.Google Scholar
Sanchis, V., Roig, J.M., Carretero, M.A., Roca, V. & Llorente, G.A. (2000) Host–parasite relationships of Zootoca vivipara (Sauria: Lacertidae) in the Pyrenees (North Spain). Folia Parasitologica 47, 118122.Google Scholar
Santos, V.G.T. & Amato, S.B. (2010) Helminth fauna of Rhinella fernandezae (Anura: Bufonidae) from the Rio Grande do Sul coastland, Brazil: analysis of the parasite community. Journal of Parasitology 96, 823826.Google Scholar
Sattmann, V.H. (1986) Über die Helminthenfauna von Triturus alpestris (Laurenti 1768) und Rana temporaria L. aus Almtümpeln in Oberösterreich (Amphibia, Plathelminthes und Nemathelminthes). Annalen des naturhistorischen Museums in Wien Serie B 87, 193196.Google Scholar
Sattmann, V.H. (1990) Endohelminths of some amphibians from Northern Greece (Trematoda, Acanthocephala, Nematoda; Amphibia: Triturus, Rana, Bombina). Herpetozoa 3, 6771.Google Scholar
Schabetsberger, R. (1994) Gastric evacuation rates of adult and larval alpine newts (Triturus alpestris) under laboratory and field conditions. Freshwater Biology 31, 143151.CrossRefGoogle Scholar
Shimalov, V.V., Shimalov, V.T. & Shimalov, A.V. (2001) Helminth fauna of newts in Belorussian Polesie. Parasitology Research 87, 356.Google Scholar
Vojtek, J. & Vojtková, L. (1972) Larvální stadia motoric v plazech CSSR. Casopis Národního Musea. Oddíl Pfírodovédny 140, 201208.Google Scholar
Vojtková, L., Moravec, F. & Nabelkova, L. (1963) On the recent stage of investigation of the amphibian helminth fauna of CSSR. Casopis Národního Musea. Oddíl Pfírodovédny 9, 121131.Google Scholar
Yildirimhan, H.S. (2008) Şeritli Semender (Triturus vittatus (Jenyns, 1835)) ve Pürtüklü Semender (Triturus karelinii (Strauch, 1870))'lerin Helmint Faunası Üzerine Bir Ön Çalışma. Türkiye Parazitoloji Dergisi 32, 158160.Google Scholar
Yildirimhan, H.S. & Öz, M. (2008) Antalya'dan Toplanan Lycisalamandra billae (Franzen & Klewen) (Kara Semenderi)'nin Helmint Faunası. Türkiye Parazitoloji Dergisi 32, 390392.Google Scholar
Yildirimhan, H.S., Bursey, C.R. & Goldberg, S.R. (2005) Helminth parasites of the Caucasian salamander (Mertensiella caucasica) from Turkey. Comparative Parasitology 71, 7587.CrossRefGoogle Scholar