Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-11T00:02:30.122Z Has data issue: false hasContentIssue false

Higher homotopy operations and cohomology

Published online by Cambridge University Press:  21 January 2010

David Blanc
Affiliation:
Department of Mathematics, University of Haifa, 31905 Haifa, Israel, blanc@math.haifa.ac.il.
Mark W. Johnson
Affiliation:
Department of Mathematics, Penn State Altoona, Altoona, PA 16601-3760, USA, mwj3@psu.edu.
James M. Turner
Affiliation:
Department of Mathematics, Calvin College, Grand Rapids, MI, USA, jturner@calvin.edu.
Get access

Abstract

We explain how higher homotopy operations, defined topologically, may be identified under mild assumptions with (the last of) the Dwyer-Kan-Smith cohomological obstructions to rectifying homotopy-commutative diagrams.

Type
Research Article
Copyright
Copyright © ISOPP 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ad.Adem, J., “The iteration of the Steenrod squares in algebraic topology”, Proc. Nat. Acad. Sci. USA 38 (1952), pp. 720726.CrossRefGoogle ScholarPubMed
An1.Antolini, R., “Cubical structures, homotopy theory”, Ann. Mat. Pura App. (4) 178 (2000), pp. 317324.CrossRefGoogle Scholar
An2.Antolini, R., “Geometric realisations of cubical sets with connections, and classifying spaces of categories”, Appl. Categ. Struct. 10 (2002), pp. 481494.Google Scholar
BB.Baues, H.-J. & Blanc, D. “Comparing cohomology obstructions”, preprint, 2008.Google Scholar
BM1.Berger, C. & Moerdijk, I., “Axiomatic homotopy theory for operads”, Comm. Math. Helv. 78 (2003), pp. 805831CrossRefGoogle Scholar
BM2.Berger, C. & Moerdijk, I., “Resolution of coloured operads and rectification of homotopy algebras”, in Batanin, M.A., Davydov, A.A., Johnson, M.S.J., Lack, S., & Neeman, A., eds., Categories in algebra, geometry and mathematical physics, Contemp. Math. 431, AMS, Providence, RI 2007, pp. 3158.Google Scholar
Be.Bergner, J.E., “Three models for the homotopy theory of homotopy theories”, Topology 46 (2007), pp. 397436.Google Scholar
BBM.Berni-Canani, U., Borceux, F., & Moens, M.-A., “On regular presheaves and regular semi-categories”, Cahiers Top. Géom. Diff. Cat. 43 (2002), pp. 163190.Google Scholar
Bl.Blanc, D., “Comparing homotopy categories”, J. K-Theory 2 (2008), pp. 169205.Google Scholar
BC.Blanc, D. & Chacholski, W., “Pointed higher homotopy operations”, preprint, 2007.Google Scholar
BDG.Blanc, D., Dywer, W.G., & Goerss, P.G., “The realization space of a π-algebra: a moduli problem in algebraic topology”, Topology 43 (2004), pp. 857892.CrossRefGoogle Scholar
BJT.Blanc, D., Johnson, M.W., & Turner, J.M., “On Realizing Diagrams of π-algebras”, Alg. & Geom. Top. 6 (2006), pp. 763807.Google Scholar
BM.Blanc, D. & Markl, M., “Higher homotopy operations”, Math. Zeit. 345 (2003), pp. 129.Google Scholar
BV.Boardman, J.M. & Vogt, R.M., Homotopy Invariant Algebraic Structures on Topological Spaces, Springer-Verlag Lec. Notes Math. 347, Berlin-New York, 1973.Google Scholar
Bor1.Borceux, F., Handbook of Categorical Algebra, Vol. 1: Basic Category Theory, Encyc. Math. & its Appl. 50, Cambridge U. Press, Cambridge, UK, 1994.Google Scholar
Bor2.Borceux, F., Handbook of Categorical Algebra, Vol. 2: Categories and Structures, Encyc. Math. & its Appl. 51, Cambridge U. Press, Cambridge, UK, 1994.Google Scholar
Bou.Bousfield, A.K., “Cosimplicial resolutions and homotopy spectralsequences in model categories,” Geometry and Topology 7 (2003) pp. 10011053.CrossRefGoogle Scholar
BH1.Brown, R. & Higgins, P.J., “On the algebra of cubes”, J. Pure & Appl. Alg. 21 (1981), pp. 233260.Google Scholar
BH2.Brown, R. & Higgins, P.J., “Cubical abelian groups with connections are equivalent to chain complexes”, Homology Homotopy Appl. 5 (2003), pp. 4952.Google Scholar
C.Cisinski, D.-C., “Les préfaisceaux comme modèles des types d'homotopie”, Astérisque 308, Soc. Math. France, Paris, 2006.Google Scholar
Co.Cordier, J.-M., “Sur la notion de diagramme homotopiquement coherent”, Third Colloquium on Categories, Part IV (Amiens, 1980) Cahiers Top. Géom. Diff. Cat. 23 (1982), No. 1, pp. 93112.Google Scholar
CP.Cordier, J.-M. & Porter, T., “Vogt's theorem on categories of homotopy coherent diagrams”, Math. Proc. Camb. Phil. Soc. 100 (1986), No. 1, pp. 6590.CrossRefGoogle Scholar
DK1.Dwyer, W.G. & Kan, D.M., “Simplicial localizations of categories”, J. Pure & Appl. Alg. 17 (1980), No. 3, pp. 267284.CrossRefGoogle Scholar
DK2.Dwyer, W.G. & Kan, D.M., “Function complexes in homotopical algebra”, Topology 19 (1980), pp. 427440.CrossRefGoogle Scholar
DK3.Dwyer, W.G. & Kan, D.M., “An obstruction theory for diagrams of simplicial sets”, Proc. Kon. Ned. Akad. Wet. - Ind. Math. 46 (1984) pp. 139146.Google Scholar
DK4.Dwyer, W.G. & Kan, D.M., “Singular functors and realization functors”, Proc. Kon. Ned. Akad. Wet. - Ind. Math. 46 (1984), pp. 147153.Google Scholar
DKSm1.Dwyer, W.G., Kan, D.M., & Smith, J.H., “An obstruction theory for simplicial categories”, Proc. Kon. Ned. Akad. Wet. - Ind. Math. 89 (1986) No. 2, pp. 153161.Google Scholar
DKSm2.Dwyer, W.G., Kan, D.M., & Smith, J.H., “Homotopy commutative diagrams and their realizations”, J. Pure & Appl. Alg., 57 (1989), No. 1, pp. 524.Google Scholar
DKSt.Dwyer, W.G., Kan, D.M., & Stover, C.R., “An E2 model category structure for pointed simplicial spaces”, J. Pure & Appl. Alg. 90 (1993), No. 2, pp. 137152.CrossRefGoogle Scholar
EM.Eilenberg, S. & Lane, S. Mac, “Acyclic models”, Amer. J. Math. 75 (1953), pp. 189199.Google Scholar
FRS.Fenn, R., Rourke, C.P., & Sanderson, B.J., “Trunks and classifying spaces”, Appl. Cat. Struct., 3 (1995), pp. 523544.CrossRefGoogle Scholar
GJ.Goerss, P.G. & Jardine, J.F., Simplicial Homotopy Theory, Progress in Mathematics 179, Birkhäuser, Basel-Boston, 1999.Google Scholar
GM.Grandis, M. & Mauri, L., “Cubical sets and their site”, Theory Appl. Categ 11 (2003), pp. 185211.Google Scholar
G.Grothendieck, A., “Pursuing stacks”, 1984 (to appear in Doc. Math. (Soc. Math. France)), ed. G. Maltsiniotis.Google Scholar
Ha.Hasse, M., “Einige Bemerkungen über Graphen, Kategorien und Gruppoide”, Math. Nach. 22 (1960), pp. 255270.Google Scholar
Hig.Higgins, P.J., Notes on Categories and Groupoids, Van Nostrand Reinhold Mathematical Studies 32, Van Nostrand Reinhold Co., London, 1971.Google Scholar
Hir.Hirschhorn, P.S., Model Categories and their Localizations, Math. Surveys & Monographs 99, AMS, Providence, RI, 2002.Google Scholar
Ho.Hovey, M.A., Model Categories, Math. Surveys & Monographs 63, AMS, Providence, RI, 1998.Google Scholar
J1.Jardine, J.F., “Cubical homotopy theory: a beginning”, preprint, 2002.Google Scholar
J2.Jardine, J.F., “Bousfield's E2 Model Theory for Simplicial Objects”, in Goerss, P.G. & Priddy, S.B., eds., Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory, Contemp. Math. 346, AMS, Providence, RI 2004, pp. 305319.Google Scholar
J3.Jardine, J.F., “Categorical homotopy theory”, Homology, Homotopy & Applic. 8 (2006), pp. 71144.Google Scholar
K.Kamps, K.H., “Kan-Bedingungen und abstrakte Homotopietheorie”, Math. Z. 124 (1972), pp. 215236.CrossRefGoogle Scholar
KP.Kamps, K.H. & Porter, T., Abstract Homotopy and Simple Homotopy Theory, World Scientific Press, Singapore, 1997.Google Scholar
K1.Kan, D.M., “Abstract homotopy, I”, Proc. Nat. Acad. Sci. USA 41 (1955), pp. 10921096.Google Scholar
K2.Kan, D.M., “Abstract homotopy, II”, Proc. Nat. Acad. Sci. USA 42 (1956), pp. 255258.Google Scholar
Kl.Klaus, S., “Cochain operations and higher cohomology operations”, Cahiers Top. Géom. Diff. Cat. 42 (2001), pp. 261284.Google Scholar
Le.Leitch, R.D., “The homotopy commutative cube”, J. London Math. Soc. (2) 9 (1974/1975), pp. 2329.CrossRefGoogle Scholar
Mc1.Lane, S. Mac, “The homology products in K(π,n)”, Proc. AMS 5 (1954), pp. 642651.Google Scholar
Mc2.Lane, S. Mac, Categories for the Working Mathematician, Springer-Verlag Grad. Texts in Math. 5, Berlin-New York, 1971.Google Scholar
Ma.Maunder, C.R.F., “Chern characters and higher-order cohomology operations”, Proc. Camb. Phil. Soc. 60 (1964), pp. 751764CrossRefGoogle Scholar
MU.Massey, W.S. & Uehara, H., “The Jacobi identity for Whitehead products”, in Algebraic geometry and topology, Princeton U. Press, Princeton, 1957, pp. 361377.Google Scholar
Mu.Munkres, J.R., “The special homotopy addition theorem”, Mich. Math. J. 2 (1953/1954), pp. 127134.Google Scholar
P1.Postnikov, M.M., “Cubical resolvents”, Dok. Ak. Nauk SSSR, New Ser. 118 (1958), pp. 10851087.Google Scholar
P2.Postnikov, M.M., “Limit complexes of cubic resolvents”, Dok. Ak. Nauk SSSR, New Ser. 119 (1958), pp. 207210.Google Scholar
Q.Quillen, D.G., Homotopical Algebra, Springer-Verlag Lec. Notes Math. 20, Berlin-New York, 1963.Google Scholar
R.Rezk, C., “A model for the homotopy theory of homotopy theory”, Trans. AMS 353 (2001), pp. 9731007.CrossRefGoogle Scholar
Se.Serre, J.-P., “Homologie singuliére des espaces fibrés: applicationsAnn. Math. 54 (1951), pp. 425505.CrossRefGoogle Scholar
Sp.Spanier, E.H., “Higher order operations”, Trans. AMS 109 (1963), pp. 509539.Google Scholar
T1.Toda, H., “Generalized Whitehead products and homotopy groups of spheres”, J. Inst. Polytech. Osaka City U., Ser. A, Math. 3 (1952), pp. 4382.Google Scholar
T2.Toda, H., Composition methods in the homotopy groups of spheres, Adv. in Math. Study 49, Princeton U. Press, Princeton, 1962.Google Scholar
V.Vagner, V.V., “The theory of relations and the algebra of partial mappings”, in Theory of Semigroups and Applications, I Izdat. Saratov. Univ., Saratov″, 1965, pp. 3178.Google Scholar