Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T16:20:40.816Z Has data issue: false hasContentIssue false

Tannakization in derived algebraic geometry

Published online by Cambridge University Press:  22 May 2015

Isamu Iwanari*
Affiliation:
Mathematical Institute, Tohoku University, Sendai, Miyagi, 980-8578, Japan, iwanari@math.tohoku.ac.jp
Get access

Abstract

In this paper we begin studying tannakian constructions in ∞-categories and combine them with the theory of motivic categories developed by Hanamura, Levine, and Voevodsky. This paper is the first in a series of papers. For the purposes above, we first construct a derived affine group scheme and its representation category from a symmetric monoidal ∞-category, which we shall call the tannakization of a symmetric monoidal ∞-category. It can be viewed as an ∞-categorical generalization of work of Joyal-Street and Nori. Next we apply it to the stable ∞-category of mixed motives equipped with the realization functor of a mixed Weil cohomology. We construct a derived motivic Galois group which represents the automorphism group of the realization functor, and whose representation category satisfies an appropriate universal property. As a consequence, we construct an underived motivic Galois group of mixed motives, which is a pro-algebraic group and has nice properties. Also, we present basic properties of derived affine group schemes in the Appendix.

Type
Research Article
Copyright
Copyright © ISOPP 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Adámek, J. and Rosicky, J., Locally Presentable and Accessible Categories, Cambridge University Press, Cambridge, (1994).Google Scholar
2.Arapura, D., An abelian category of motivic sheaves, Adv. Math. 233 (2013), 135195.Google Scholar
3.André, Y., Une introduction aux motifs (motifs purs, motifs mixtes, periodes), Panoramas et Syntheses 17, Paris: Soc. Math. de France (2004).Google Scholar
4.Beilinson, A., Remarks on Grothendieck’s standard conjectures, arXiv:1006.1116Google Scholar
5.Beilinson, A. and Vologodsky, V., A DG guide to Voevodsky’s motives, GAFA 17 (2008), 17091787.Google Scholar
6.Ben-Zvi, D., Francis, J. and Nadler, D., Integral transforms and Drinfeld centers in derived algebraic geometry, J. Amer. Math. Soc. (2010), 909966.Google Scholar
7.Bergner, J., A survey of (∞,1)-categories, Towards Higher Categories, IMA Vol. in Math. and Its Applications, Springer(2010), 6983.Google Scholar
8.Bloch, S. and Kriz, I., Mixed Tate motives, Ann. Math. (2) 140 (1994), 557605.Google Scholar
9.Bondarko, M.V., Differential graded motives: weight complex, weight filtrations and spectral sequences for realizations; Voevodsky vs. Hanamura, J. Inst. Math. Jussieu 8 (2009), 3997.CrossRefGoogle Scholar
10.Bousfield, A. and Gugenheim, V.K.A.M., On PL de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 179, Amer. Math. Soc. (1976).Google Scholar
11.Blumberg, A.J., Gepner, D. and Tabuada, G., A universal characterization of higher algebraic K-theory, Geometry and Topology 17 (2013), 2013–838.Google Scholar
12.Cisinski, D.-C. and Déglise, F., Local and stable homological algebra in Grothendieck abelian categories, Homotopy Homology Applications 11(1) (2009), 219260.Google Scholar
13.Cisinski, D.-C. and Déglise, F., Mixed Weil cohomologies, Adv. in Math. 230 (2012), 55130.Google Scholar
14.Deligne, P. and Milne, J.S., Tannakian categories, Lec. Notes in Math. 900, Springer-Verlag (1982), 1011061.Google Scholar
15.Dugger, D., Combinatorial model categories have presentations, Adv. Math. 164 (2001), 177201.Google Scholar
16.Dwyer, W. and Kan, D., Function complexes in homotopical algebra, Topology 19 (1980), 427440.CrossRefGoogle Scholar
17.Dundas, B.I., Röndigs, O. and Østvær, P.A., Motivic functors, Documenta Math. 8 (2003), 489525.Google Scholar
18.Fukuyama, H. and Iwanari, I., Monoidal infinity category of complexes from Tannakian viewpoint, Math. Ann. 356 (2013), 519553.Google Scholar
19.Grothendieck, A., Revêtements étales et Groupe Fondamental (SAG1), Lec. Notes in Math. 224 (1971), Springer-Verlag.Google Scholar
20.Hanamura, M., Mixed motives and algebraic cycles I, Math. Res. Lett. 2 (1995), 811821.Google Scholar
21.Hanamura, M., Mixed motives and algebraic cycles III, Math. Res. Lett. 6 (1999), 61#x2013;82.Google Scholar
22.Hess, K., Rational homotopy theory: a brief introduction, Interactions between homotopy theory and algebra, 175-202, Contemp. Math. 436, Amer. Math. Soc., Providence, RI, 2007.Google Scholar
23.Hinich, V., Homological algebra of homotopy algebras, Comm. in algebra 25 (1997), 32913323.Google Scholar
24.Hovey, M., Model categories, Math. surveys and Monographs 63, Amer. Math. Soc. (1999).Google Scholar
25.Hovey, M., Spectra and symmetric spectra in general model categories, J. Pure Appl. Alg. 165 (2001), 63127.Google Scholar
26.Iwanari, I., Bar construction and tannakization, to appear in Publ. Res. Ins. Math. Sci.Google Scholar
27.Iwanari, I., Mixed motives and quotient stacks: Abelian varieties, available at arXiv:1307.3175.Google Scholar
28.Jardine, J.F., Motivic symmetric spectra, Documenta Math. 5 (2000), 445552.Google Scholar
29.Joyal, A., Quasi-categories and Kan complexes, J. Pure Appl. Algebra 175(1–3) (2002), 207222.Google Scholar
30.Joyal, A. and Street, R., An introduction to Tannaka duality and quantum groups, Lecture Notes in Math. 1488 (1991), Springer-Verlag 411492.Google Scholar
31.Keel, S. and Mori, S., Quotients by groupoids, Ann. Math. 145 (1997), 193213.Google Scholar
32.Kelly, G., Basic concepts of enriched category theory, Repr. Theory Appl. Categ. 10 (2005), vi+137 pp. (electronic).Google Scholar
33.Kriz, I. and May, J.P., Operads, algebras, modules and motives, Astérisque 233 (1995), iv+145pp.Google Scholar
34.Levine, M., Tate motives and the vanishing conjectures for algebraic K-theory, in Algebraic K-theory and algebraic topology. Proceedings of NATO Advanced Study Institute, held as Lake Luoise, Alberta, December 12–16, 1991,NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci. 407, Kluwer 1993, 167188.Google Scholar
35.Levine, M., Mixed Motives, Mathematical Surveys and Monographs 57, 1998, Amer. Math. Soc.Google Scholar
36.Lurie, J., Higher Topos Theory, Ann. Math. Studies 170, Princeton Univ. Press, 2009.Google Scholar
37.Lurie, J., Higher Algebra, preprint, February 2012 available at the author's webpage.Google Scholar
38.Lurie, J., Derived Algebraic Geometry series, preprint, VII, VIII version of May 2011.Google Scholar
39.Lurie, J., Derived algebraic geometry, Ph. D thesis, MIT (2004)Google Scholar
40.Mazza, C., Voevodsky, V. and Weibel, C., Lecture Notes in Motivic Cohomology, Clay Math. Monograph 2 (2006).Google Scholar
41.Morel, F. and Voevodsky, V., 𝔸1-homotopy theory of schemes, Publ. Math. IHES 90 (1999), 45143.Google Scholar
42.Panin, I., Pimenov, K. and Röndigs, O., On Voevodsky’s algebraic K-theory spectrum BGL, Algebraic Topology, Abel Symposia 4 (2009), 279330.Google Scholar
43.Pridham, J.P., Presenting higher stacks as simplicial schemes, preprint arXiv:0905.4044.Google Scholar
44.Rognes, J., Galois extensions of structured ring spectra, Memoirs of the Amer. Math. Soc. 192, no. 898 (2008).Google Scholar
45.Röndigs, O. and Østvær, P.A., Modules over motivic cohomology, Adv. Math. 219 (2008), 689727.Google Scholar
46.Saavedra Rivano, N., Categories Tannakiennes, Lecture Notes in Math. 265, Springer-Verlag, 1972.Google Scholar
47.Schwede, S. and Shipley, B., Algebras and modules in monoidal model categories, Proc. London Math. Soc. 80 (2000), 491511.Google Scholar
48.Segal, G., Categories and cohomology theories, Topology 13 (1974), 293312.Google Scholar
49.Spitzweck, M., Derived fundamental groups for Tate motives, preprint (2010) arXiv:1005.2670Google Scholar
50.Tannaka, T., Über den Dualitätssatz der nichtkommutativen topologischen Gruppen, Tohoku Math. J. 45 (1939), 112.Google Scholar
51.Toën, B., Homotopical and Higher Categorical Structures in Algebraic Geometry, habilitation’s thesis arXiv:math/0312262Google Scholar
52.Toën, B. and Vezzosi, G., Homotopical algebraic geometry I, Adv. in Math. 193 (2005), 257372; II, Mem. Amer. math. Soc. 902 (2008).Google Scholar
53.Voevodsky, V., Triangulated category of motives, Chapter 5 of “Cycles, Transfers, and Motivic Homology Theories”, Ann. Math. Studies 143, Princeton Univ. Press, 2000.Google Scholar
54.Voevodsky, V., “Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998)”, Documenta Mathematica 579604.Google Scholar
55.Wallbridge, J., Tannaka duality over ring spectra, preprint arXiv:1204.5787.Google Scholar