Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T15:46:18.427Z Has data issue: false hasContentIssue false

Dendroidal sets as models for connective spectra

Published online by Cambridge University Press:  08 July 2014

Matija Bašić
Affiliation:
Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu, Croatia, mbasic@math.hr
Thomas Nikolaus
Affiliation:
Fakultät für Mathematik, Universität Regensburg, thomas1.nikolaus@mathematik.uni-regensburg.de
Get access

Abstract

Dendroidal sets have been introduced as a combinatorial model for homotopy coherent operads. We introduce the notion of fully Kan dendroidal sets and show that there is a model structure on the category of dendroidal sets with fibrant objects given by fully Kan dendroidal sets. Moreover we show that the resulting homotopy theory is equivalent to the homotopy theory of connective spectra.

Type
Research Article
Copyright
Copyright © ISOPP 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bar07.Barwick, C.. On (enriched) left Bousfield localizations of model categories. Preprint arxiv: 0708.2067.Google Scholar
BM03.Berger, C. and Moerdijk, I.. Axiomatic homotopy theory for operads. Comment. Math. Helv. 78(4) (2003), 805831.CrossRefGoogle Scholar
CM11.Cisinski, D.C. and Moerdijk, I.. Dendroidal sets as models for homotopy operads. Journal of Topology 4(2) (2011), 257299.Google Scholar
CM13a.Cisinski, D.C. and Moerdijk, I.. Dendroidal Segal spaces and infinity-operads. Journal of Topology 6(3) (2013), 675704.Google Scholar
CM13b.Cisinski, D.C. and Moerdijk, I.. Dendroidal sets and simplicial operads. Journal of Topology 6(3) (2013), 705756.Google Scholar
Heu11a.Heuts, G.. Algebras over infinity-operads. Preprint arxiv: 1110.1776.Google Scholar
Heu11b.Heuts, G.. An infinite loop space machine for infinity-operads. Preprint arxiv: 1112.0625.Google Scholar
JO12.Johnson, N. and Osorno, A.M.. Modeling stable one-types. Preprint arxiv: 1201.2686.Google Scholar
Lei04.Leinster, T. Higher operads, higher categories. London Mathematical Society Lecture Note Series 298. Cambridge University Press, Cambridge, 2004.Google Scholar
Lur09.Lurie, J.. Higher topos theory. Annals of Mathematics Studies. Princeton university Press, 2009.Google Scholar
Lur11.Lurie, J.. Higher algebra. Prepublication book draft http://www.math.harvard.edu/lurie, 2011.Google Scholar
May74.May, J.P.. E-spaces, group completions, and permutative categories. New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972) 11 (1974), 6193.Google Scholar
May08.May, J.P.. Notes on picard groupoids. Available at http://www.math.uchicago.edu/may/MISC/Picard.pdf, 2008.Google Scholar
MTW.Moerdijk, I. and Toën, B.. Simplicial Methods for Operads and Algebraic Geometry. Springer, 2010.Google Scholar
MW07.Moerdijk, I. and Weiss, I.. Dendroidal sets. Algebr Geom. Topol. 7 (2007), 14411470.Google Scholar
MW09.Moerdijk, I. and Weiss, I.. On inner Kan complexes in the category of dendroidal sets. Adv. Math. 221(2) (2009), 343389.Google Scholar
Nik13.Nikolaus, T.. Algebraic K-theory of ∞-operads. Preprint arxiv: 1303.2198.Google Scholar
Spi01.Spitzweck, M.. Operads, algebras and modules in model categories and motives. PhD thesis, Universität Bonn, 2001.Google Scholar
Wei11.Weiss, I.. From operads to dendroidal sets. In Mathematical foundations of quantum field theory and perturbative string theory, Proc. Sympos. Pure Math. 83, pages 3170. Amer. Math. Soc., Providence, RI, 2011.Google Scholar
Whi95.Whitehead, G.W.. Elements of Homotopy Theory. Springer, 1995.Google Scholar