Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T13:27:29.752Z Has data issue: false hasContentIssue false

Module categories for group algebras over commutative rings

Published online by Cambridge University Press:  06 March 2013

Dave Benson
Affiliation:
Institute of Mathematics, University of Aberdeen, King's College, Aberdeen AB24 3UE, ScotlandU.K.d.j.benson@abdn.ac.uk
Srikanth B. Iyengar
Affiliation:
Department of Mathematics, University of Nebraska, Lincoln, NE 68588, U.S.A.s.b.iyengar@unl.edu
Henning Krause
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany. hkrause@math.uni-bielefeld.de
Get access

Abstract

We develop a suitable version of the stable module category of a finite group G over an arbitrary commutative ring k. The purpose of the construction is to produce a compactly generated triangulated category whose compact objects are the finitely presented kG-modules. The main idea is to form a localisation of the usual version of the stable module category with respect to the filtered colimits of weakly injective modules. There is also an analogous version of the homotopy category of weakly injective kG-modules and a recollement relating the stable category, the homotopy category, and the derived category of kG-modules.

Type
Research Article
Copyright
Copyright © ISOPP 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

with an appendix by Greg Stevenson

References

1.Balmer, P., The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math. 588 (2005), 149168.CrossRefGoogle Scholar
2.Balmer, P., Favi, G., Generalized tensor idempotents and the telescope conjecture, Proc. Lond. Math. Soc. 102 (3) (2011), 11611185.CrossRefGoogle Scholar
3.Benson, D. J., Representations and Cohomology I: Basic representation theory of finite groups and associative algebras, Cambridge Studies in Advanced Mathematics 30, Cambridge University Press, 1991, reprinted in paperback, 1998.Google Scholar
4.Benson, D. J., Carlson, J. F., and Rickard, J., Thick subcategories of the stable module category, Fundamenta Mathematicae 153 (1997), 5980.Google Scholar
5.Benson, D. J., Iyengar, S. B., and Krause, H., Stratifying modular representations of finite groups, Ann. of Math. 174 (2011), 16431684.Google Scholar
6.Benson, D. J. and Krause, H., Complexes of injective kG-modules, Algebra & Number Theory 2 (2008), 130.CrossRefGoogle Scholar
7.Deligne, P. and Milne, J. S., Tannakian categories, in Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics 900, Springer-Verlag, Berlin/New York, 1982, pp. 101228.Google Scholar
8.Evens, L., The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224239.Google Scholar
9.Gabriel, P. and Zisman, M., Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 35, Springer-Verlag, Berlin/New York, 1967.Google Scholar
10.Gaschütz, W., Über den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen Gruppen, Math. Z. 56 (1952), 376387.Google Scholar
11.Hopkins, M. J., Global methods in homotopy theory, Homotopy Theory, Durham 1985, Lecture Notes in Mathematics 117, Cambridge University Press, 1987.Google Scholar
12.Happel, D., Triangulated categories in the representation theory of finite dimensional algebras, London Math. Soc. Lecture Note Series 119, Cambridge University Press, 1988.Google Scholar
13.Higman, D. G., Modules with a group of operators, Duke Math. J. 21 (1954), 369376.CrossRefGoogle Scholar
14.Hovey, M., Palmieri, J. H., and Strickland, N. P., Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128, no. 610, 1997.Google Scholar
15.Jensen, C. U. and Lenzing, H., Model theoretic algebra, Gordon and Breach, 1989.Google Scholar
16.Keller, B., Chain complexes and stable categories, Manuscripta Math. 67 (1990), 379417.Google Scholar
17.Keller, B., Deriving DG categories, Ann. Scient. Éc. Norm. Sup. 27 (4) (1994), 63102.Google Scholar
18.Krause, H., Approximations and adjoints in homotopy categories, Math. Ann. 353 (2012), 765781.Google Scholar
19.Krause, H., The stable derived category of a noetherian scheme, Compositio Math. 141 (2005), 11281162.Google Scholar
20.Matsumura, H., Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1986.Google Scholar
21.Neeman, A., The chromatic tower for D(R), Topology 31 (1992), 519532.Google Scholar
22.Neeman, A., The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Scient. Éc. Norm. Sup. 25 (4) (1992), 547566.Google Scholar
23.Neeman, A., Triangulated categories, Annals of Math. Studies 148, Princeton Univ. Press, 2001.Google Scholar
24.Prest, M., Model theory and modules, London Math. Society Lecture Note Series 130, Cambridge University Press, 1988.Google Scholar
25.Prest, M., Purity, spectra and localisation, Cambridge University Press, 2009.CrossRefGoogle Scholar
26.Quillen, D. G., Higher algebraic K-theory I, Algebraic K-theory I: Higher K-theories, Lecture Notes in Mathematics 341, Springer-Verlag, Berlin/New York, 1973, pp. 85147.Google Scholar
27.Rickard, J., Derived categories and stable equivalence, J. Pure & Applied Algebra 61 (1989), 303317.CrossRefGoogle Scholar
28.Stevenson, G., Support theory via actions of tensor triangulated categories, J. Reine Angew. Math. DOI:10.1515/crelle-2012-0025.Google Scholar
29.Verdier, J.-L., Des catégories dérivées des catégories abéliennes, Astérisque 239, Société Math. de France, 1996.Google Scholar