Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T18:58:14.428Z Has data issue: false hasContentIssue false

Noncommutative geometry of foliations

Published online by Cambridge University Press:  04 March 2008

Yuri A. Kordyukov
Affiliation:
yurikor@matem.anrb.ruInstitute of Mathematics, Russian Academy of Sciences, 112 Chernyshevsky street, 450077 UfaRussia
Get access

Abstract

We review basic notions and methods of noncommutative geometry and their applications to analysis and geometry on foliated manifolds.

Type
Research Article
Copyright
Copyright © ISOPP 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Atiyah, M. F.. K-Theory (Lectures by M. F. Atiyah). Harvard University Press, Cambridge, Massachusets, 1965Google Scholar
2.Atiyah, M. F.. Global theory of elliptic operators. In Proc. of the Intern. Conf. on Functional Analysis and Related Topics (Tokyo, 1969), p. 2130, Univ. of Tokyo Press, Tokyo, 1970Google Scholar
3.Atiyah, M. F. and Bott, R.. A Lefschetz fixed point formula for elliptic complexes. I. Ann. of Math. 86 (1967), 374407CrossRefGoogle Scholar
4.Atiyah, M. F. and Singer, I.. The index of elliptic operators. I. Ann. of Math. 87 (1968),484530CrossRefGoogle Scholar
5.Atiyah, M. F. and Singer, I.. The index of elliptic operators. IV. Ann. of Math. 93 (1971),119138CrossRefGoogle Scholar
6.Baaj, S. and Julg, P.. Théorie bivariante de Kasparov et opérateurs non bornés dans les C*-modules hilbertiens. C. R. Acad. Sci. Paris Sér. I Math. 296 (1983),875878Google Scholar
7.Bass, H.. Algebraic K-theory. W. A. Benjamin, New York and Amsterdam, 1968Google Scholar
8.Baum, P. and Connes, A.. Geometric K-theory for Lie groups and foliations. Enseign. Math. (2) 46 (2000),342Google Scholar
9.Baum, P. and Douglas, R. G..K homology and index theory. In Operator algebras and applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math. Vol. 38, p. 117173. Amer. Math. Soc., Providence, R.I., 1982CrossRefGoogle Scholar
10.Beals, R. and Greiner, P.. Calculus on Heisenberg manifolds, Annals of Math. Studies, Vol. 119. Princeton Univ. Press, Princeton, 1988Google Scholar
11.Benameur, M.-T.. Theoreme de Lefschetz cyclique. C. R. Acad. Sci. Paris Ser. I Math. 320 (1995), 13111314Google Scholar
12.Benameur, M.-T.. A longitudinal Lefschetz theorem in K-theory. K-Theory 12 (1997), 227257CrossRefGoogle Scholar
13.Benameur, M.-T.. Cyclic cohomology and the family Lefschetz theorem. Math. Ann. 323 (2002), 97121CrossRefGoogle Scholar
14.Benameur, M.-T.. A higher Lefschetz formula for flat bundles. Trans. Am. Math. Soc. 355 (2003), 119142CrossRefGoogle Scholar
15.Berline, N., Getzler, E., and Vergne, M.. Heat Kernels and the Dirac Operator, Grundl. der Math. Wiss. Vol. 298. Springer, Berlin, 1992Google Scholar
16.Bernshteĭn, I. N. and Rosenfeld, B. I.. Homogeneous spaces of infinite-dimensional Lie algebras and the characteristic classes of foliations. Uspehi Mat. Nauk 28, no. 4 (1973), 103138Google Scholar
17.Bernshteĭn, I. N. and Rozenfeld, B. I.. Characteristic classes of foliations. Funkcional. Anal. i Priložen. 6, no. 1, (1972), 6869Google Scholar
18.Bismut, J.-M.. The Atiyah-Singer index theorem for families of Dirac operators: Two heat equation proofs. Invent. Math. 83 (1985), 91151CrossRefGoogle Scholar
19.Blackadar, B.. K-theory for operator algebras, Mathematical Sciences Research Institute Publications Vol. 5. Cambridge University Press, Cambridge, 1998Google Scholar
20.Block, J. and Getzler, E.. Quantization of foliations. In Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, Vol. 1, 2 (New York, 1991), p. 471487, World Sci. Publishing. River Edge, NJ, 1992Google Scholar
21.Bost, J.. Principe d'Oka, K-théorie et systèmes dynamiques non commutatifs. Invent. Math. 101 (1990), 261333CrossRefGoogle Scholar
22.Bott, R.. On topological obstructions to integrability. In Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, p. 2736. Gauthier-Villars, Paris, 1971Google Scholar
23.Bott, R.. Lectures on characteristic classes and foliations. Notes by Lawrence Conlon, with two appendices by J. Stasheff. In Lectures on algebraic and differential topology (Second Latin American School in Math., Mexico City, 1971). Lecture Notes in Math., Vol. 279, p. 194. Springer, Berlin, 1972Google Scholar
24.Bott, R. and Haefliger, A.. On characteristic classes of Γ-foliations. Bull. Amer. Math. Soc. 78 (1972), 10391044CrossRefGoogle Scholar
25.Brodzki, J.. An introduction to K-theory and cyclic cohomology. Advanced Topics in Mathematics. PWN—Polish Scientific Publishers, Warsaw, 1998Google Scholar
26.Brown, L. G., Green, P., and Rieffel, M. A.. Stable isomorphism and strong Morita equivalence of C*-algebras. Pacific J. Math. 71 (1977), 349363CrossRefGoogle Scholar
27.Brylinski, J.-L. and Nistor, V.. Cyclic cohomology of étale groupoids. K-Theory 8 (1994), 341365CrossRefGoogle Scholar
28.Camacho, C. and Neto, A. Lins. Geometric theory of foliations. Birkhäuser Boston Inc., Boston, MA, 1985CrossRefGoogle Scholar
29.Candel, A. and Conlon, L.. Foliations. I, Graduate Studies in Mathematics. Vol. 23. American Mathematical Society, Providence, RI, 2000Google Scholar
30.Candel, A. and Conlon, L.. Foliations. II, Graduate Studies in Mathematics. Vol. 60. American Mathematical Society, Providence, RI, 2003Google Scholar
31.da Silva, A. Cannas and Weinstein, A.. Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, Vol. 10. American Mathematical Society, Providence, RI, 1999Google Scholar
32.Carriere, Y.. Flots riemanniens. In Transversal structure of foliations (Toulouse, 1982). Astérisque 116 (1984), 3152Google Scholar
33.Connes, A.. The von Neumann algebra of a foliation. In Mathematical problems in theoretical physics (Proc. Internat. Conf., Univ. Rome, Rome, 1977), Lecture Notes in Phys. Vol. 80. p. 145151. Springer, Berlin, 1978Google Scholar
34.Connes, A.. Sur la théorie non commutative de l'intégration. In Algèbres d'opérateurs (Sém., Les Plans-sur-Bex, 1978), Lecture Notes in Math. Vol. 725. p. 19143. Springer, Berlin, 1979Google Scholar
35.Connes, A.. C* algèbres et géométrie différentielle. C. R. Acad. Sci. Paris Sér. A-B 290 (1980), A599A604Google Scholar
36.Connes, A.. An analogue of the Thom isomorphism for crossed products of a C* algebra by an action of ℝ. Adv. in Math. 39 (1981), 3155CrossRefGoogle Scholar
37.Connes, A.. A survey of foliations and operator algebras. In Operator algebras and applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math. Vol. 38. p. 521628. Amer. Math. Soc., Providence, R.I., 1982CrossRefGoogle Scholar
38.Connes, A.. Cyclic cohomology and the transverse fundamental class of a foliation. In Geometric methods in operator algebras (Kyoto, 1983), Pitman Res. Notes in Math. Vol. 123. p. 52144. Longman, Harlow, 1986Google Scholar
39.Connes, A.. Noncommutative differential geometry. Publ. Math. 62 (1986), 41144CrossRefGoogle Scholar
40.Connes, A.. The action functional in non-commutative geometry. Commun. Math. Phys. 117 (1988), 673683CrossRefGoogle Scholar
41.Connes, A.. Compact metric spaces, Fredholm modules and hyperfiniteness. Ergodic Theory Dynam. Systems 9 (1989), 207220CrossRefGoogle Scholar
42.Connes, A.. Noncommutative geometry. Academic Press Inc., San Diego, CA, 1994Google Scholar
43.Connes, A.. Geometry from the spectral point of view. Lett. Math. Phys. 34 (1995), 203238CrossRefGoogle Scholar
44.Connes, A.. Gravity coupled with matter and the foundation of non commutative geometry. Commun. Math. Phys. 182 (1996), 155176CrossRefGoogle Scholar
45.Connes, A.. Noncommutative geometry—year 2000. Geom. Funct. Anal., Special Volume, Part II (2000), 481559Google Scholar
46.Connes, A.. Cyclic cohomology, noncommutative geometry and quantum group symmetries. In Noncommutative geometry, Lecture Notes in Math., Vol. 1831. p. 171. Springer, Berlin, 2004CrossRefGoogle Scholar
47.Connes, A. and Kreimer, D.. Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199 (1998), 203242CrossRefGoogle Scholar
48.Connes, A. and Kreimer, D.. Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210 (2000), 249273CrossRefGoogle Scholar
49.Connes, A. and Kreimer, D.. Renormalization in quantum field theory and the Riemann-Hilbert problem II: The β-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216 (2001), 215241CrossRefGoogle Scholar
50.Connes, A. and Moscovici, H.. The local index formula in noncommutative geometry. Geom. Funct. Anal. 5 (1995), 174243CrossRefGoogle Scholar
51.Connes, A. and Moscovici, H.. Hopf algebras, cyclic cohomology and the transverse index theorem. Commun. Math. Phys. 198 (1998), 199246CrossRefGoogle Scholar
52.Connes, A. and Moscovici, H.. Differentiable cyclic cohomology and Hopf algebraic structures in transverse geometry. In Essays on geometry and related topics, Vol. 1, 2, Monogr. Enseign. Math. Vol. 38. p. 217255. Enseignement Math., Geneva, 2001Google Scholar
53.Connes, A. and Moscovici, H.. Modular Hecke algebras and their Hopf symmetry. Moscow Math. Journal 4 (2004), 67109CrossRefGoogle Scholar
54.Connes, A. and Moscovici, H.. Rankin-Cohen brackets and the Hopf algebra of transverse geometry. Moscow Math. Journal 4 (2004), 111130CrossRefGoogle Scholar
55.Connes, A. and Skandalis, G.. The longitudinal index theorem for foliations. Publ. Res. Inst. Math. Sci. 20 (1984), 11391183CrossRefGoogle Scholar
56.Connes, A. and Takesaki, M.. The flow of weights on factors of type III. Tôhoku Math. J. 29 (1977), 473575CrossRefGoogle Scholar
57.Crainic, M.. Cyclic cohomology of étale groupoids: the general case. K-Theory 17 (1999), 319362CrossRefGoogle Scholar
58.Crainic, M. and Moerdijk, I.. A homology theory for étale groupoids. J. Reine Angew. Math. 521 (2000), 2546Google Scholar
59.Crainic, M. and Moerdijk, I.. Foliation groupoids and their cyclic homology. Adv. Math. 157 (2001), 177197CrossRefGoogle Scholar
60.Crainic, M. and Moerdijk, I.. Čech-De Rham theory for leaf spaces of foliations. Math. Ann. 328 (2004), 5985CrossRefGoogle Scholar
61.Dixmier, J.. Existence de traces non normales. C.R. Acad. Sci. Paris Ser A-B 262 (1996), A1107A1108Google Scholar
62.Dixmier, J.. Les C*-algèbres et leurs représentations. Deuxième édition. Cahiers Scientifiques, Fasc. XXIX. Gauthier-Villars Éditeur, Paris, 1969Google Scholar
63.Douglas, R. G., Hurder, S., and Kaminker, J.. Cyclic cocycles, renormalization and eta invariants. Invent Math. 103 (1991), 101181CrossRefGoogle Scholar
64.Douglas, R. G., Hurder, S., and Kaminker, J.. The longitudinal cocycle and the index of the Toeplitz operators. J. Funct. Anal. 101 (1995), 120144CrossRefGoogle Scholar
65.Duistermaat, J. J. and Guillemin, V.. The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29 (1975), 3979CrossRefGoogle Scholar
66.Egorov, Yu. V.. The canonical transformations of pseudodifferential operators. Uspehi Mat. Nauk 24, no. 5 (1969), 235236Google Scholar
67.Ehresmann, Ch.. Structures feuilletees. In Proc. 5th Canad. Math. Congr. Montreal. (1961), p. 109172. Univ. Toronto Press, Toronto, 1963Google Scholar
68.Fack, T. and Skandalis, G.. Sur les représentations et ideaux de la C*-algèbre d'un feuilletage. J.Operator Theory 8 (1982), 95129Google Scholar
69.Fedida, E.. Sur les feuilletages de Lie. C. R. Acad. Sci. Paris. Ser. A-B 272 (1971), A999A1001Google Scholar
70.Fuchs, D. B.. Cohomology of infinite-dimensional Lie algebras. Contemporary Soviet Mathematics. Consultants Bureau, New York, 1986Google Scholar
71.Gerstenhaber, M.. The cohomology structure of an associative ring. Ann. of Math. 78 (1963), 267288CrossRefGoogle Scholar
72.Getzler, E.. The odd Chern character in cyclic homology and spectral flow. Topology 32 (1993), 489507CrossRefGoogle Scholar
73.Godbillon, C.. Cohomologies d'algèbres de Lie de champs de vecteurs formels. In Séminaire Bourbaki, 25ème année (1972/1973), Exp. No. 421, Lecture Notes in Math. Vol. 383. p. 6987. Springer, Berlin, 1974Google Scholar
74.Godbillon, C.. Feuilletages. Études géométriques Progress in Mathematics. Vol. 98. Birkhäuser Verlag, Basel, 1991Google Scholar
75.Golse, F. and Leichtnam, E.. Applications of Connes' geodesic flow to trace formulas in noncommutative geometry. J. Funct. Anal. 160 (1998), 408436CrossRefGoogle Scholar
76.Gorokhovsky, A.. Characters of cycles, equivariant characteristic classes and Fredholm modules. Commun. Math. Phys. 208 (1999), 123CrossRefGoogle Scholar
77.Gorokhovsky, A.. Secondary characteristic classes and cyclic cohomology of Hopf algebras. Topology 41 (2002), 9931016CrossRefGoogle Scholar
78.Gorokhovsky, A. and Lott, J.. Local index theory over étale groupoids. J. Reine und Angew. Math. 560 (2003), 151198Google Scholar
79.Gorokhovsky, A. and Lott, J.. Local index theory over foliation groupoids. Adv. Math. 204 (2006), 413447CrossRefGoogle Scholar
80.Gotay, M. J.. On coisotropic imbeddings of presymplectic manifolds. Proc. Amer. Math. Soc. 84 (1982), 111114CrossRefGoogle Scholar
81.Gracia-Bondía, J. M.Várilly, J. C., and Figueroa, H.. Elements of noncommutative geometry. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Boston Inc., Boston, MA, 2001CrossRefGoogle Scholar
82.Guichardet, A.. Cohomologie des groupes topologiques et des algèbres de Lie, Textes Mathématiques. Vol. 2. CEDIC, Paris, 1980Google Scholar
83.Guillemin, V.. A new proof of Weyl's formula on the asymptotic distribution of eigenvalues. Adv. Math. 55 (1985) 131160CrossRefGoogle Scholar
84.Guillemin, V.. Gauged Lagrangian distributions. Adv. Math. 102 (1993), 184201CrossRefGoogle Scholar
85.Guillemin, V.. Residue traces for certain algebras of Fourier integral operators. J. Funct. Anal. 115 (1993), 391417CrossRefGoogle Scholar
86.Guillemin, V. and Sternberg, S.. Geometric Asymptotics. American Mathematical Society, Providence, R. I., 1977CrossRefGoogle Scholar
87.Guillemin, V. and Sternberg, S.. Some problems in integral geometry and some related problems in microlocal analysis. Amer. J. Math. 101 (1979), 915959CrossRefGoogle Scholar
88.Haefliger, A.. Variétés feuilletés. Ann. Scuola Norm. Sup. Pisa 16 (1962), 367397Google Scholar
89.Haefliger, A.. Homotopy and integrability. In Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Math., Vol. 197. p. 133163. Springer, Berlin, 1971Google Scholar
90.Haefliger, A.. Sur les classes caractéristiques des feuilletages. In Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 412, Lecture Notes in Math., Vol. 317. p. 239260. Springer, Berlin, 1973Google Scholar
91.Haefliger, A.. Differential cohomology. In Differential topology (Varenna, 1976), p. 1970. Liguori, Naples, 1979Google Scholar
92.Haefliger, A.. Groupoïdes d'holonomie et classifiants. In Transversal structure of foliations (Toulouse, 1982). Astérisque 116 (1984), 7097Google Scholar
93.Hector, G.. Groupoïdes, feuilletages et C*-algèbres (quelques aspects de la conjecture de Baum-Connes). In Geometric study of foliations (Tokyo, 1993), p. 334. World Sci. Publishing, River Edge, NJ, 1994Google Scholar
94.Heitsch, J. L.. Bismut superconnections and the Chern character for Dirac operators on foliated manifolds. K-Theory 9 (1995), 507528CrossRefGoogle Scholar
95.Heitsch, J. L. and Lazarov, C.. A Lefschetz theorem for foliated manifolds. Topology 29 (1990), 127162CrossRefGoogle Scholar
96.Heitsch, J. L. and Lazarov, C.. Rigidity theorems for foliations by surfaces and spin manifolds. Michigan Math. J. 38 (1991), 285297CrossRefGoogle Scholar
97.Heitsch, J. L. and Lazarov, C.. A general families index theorem. K-Theory 18 (1999), 181202CrossRefGoogle Scholar
98.Higson, N. and Roe, J.. Analytic K-Homology. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2000Google Scholar
99.Hilsum, M. and Skandalis, G.. Stabilité des C*-algèbres de feuilletages. Ann. Inst. Fourier (Grenoble) 33 (1983), 201208CrossRefGoogle Scholar
100.Hilsum, M. and Skandalis, G.. Morphismes K-orientés d'espaces de feuilles et fonctorialite en théorie de Kasparov. Ann. scient. Ec. Norm. Sup. 20 (1987), 325390CrossRefGoogle Scholar
101.Hörmander, L.. The analysis of linear partial differential operators. III, Grundlehren der Mathematischen Wissenschaften, Vol. 274. Springer-Verlag, Berlin, 1994Google Scholar
102.Hörmander, L.. The analysis of linear partial differential operators. IV, Grundlehren der Mathematischen Wissenschaften. Vol. 275. Springer-Verlag, Berlin, 1994Google Scholar
103.Hurder, S. and Katok, A.. Secondary classes and transverse measure theory of a foliation. Bull. Amer. Math. Soc. (N.S.) 11 (1984), 347350CrossRefGoogle Scholar
104.Jensen, K. K. and Thomsen, K.. Elements of KK-theory. Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston, MA, 1991Google Scholar
105.Ji, R.. Smooth dense subalgebras of reduced group C*-algebras, Schwartz cohomology of groups, and cyclic cohomology. J. Funct. Anal. 107 (1992), 133CrossRefGoogle Scholar
106.Kamber, F. and Tondeur, P.. Characteristic invariants of foliated bundles. Manuscripta Math. 11 (1974), 5189CrossRefGoogle Scholar
107.Kamber, F. and Tondeur, Ph.. Foliated bundles and characteristic classes, Lecture Notes in Mathematics. Vol. 493. Springer, Berlin, 1975Google Scholar
108.Karoubi, M.. K-theory. Springer-Verlag, Berlin, 1978CrossRefGoogle Scholar
109.Karoubi, M.. Homologie cyclique et K-théorie. Astérisque Vol. 149. 1987Google Scholar
110.Kasparov, G. G.. Topological invariants of elliptic operators. I. K-homology. Izv. Akad. Nauk SSSR Ser. Mat. 39, no. 4 (1975), 796838Google Scholar
111.Kobayashi, Sh. and Nomizu, K.. Foundations of differential geometry. Vol. II. Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II. Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969Google Scholar
112.Konechny, A. and Schwarz, A.. Introduction to M(atrix) theory and noncommutative geometry. Phys. Rep. 360 (2002), 353465CrossRefGoogle Scholar
113.Kordyukov, Yu. A.. Noncommutative spectral geometry of Riemannian foliations. Manuscripta Math. 94 (1997), 4573CrossRefGoogle Scholar
114.Kordyukov, Yu. A.. Adiabatic limits and spectral geometry of foliations. Math. Ann. 313 (1999), 763783CrossRefGoogle Scholar
115.Kordyukov, Yu. A.. The trace formula for transversally elliptic operators on Riemannian foliations. St. Petersburg Math. J. 12, no. 3 (2001), 407422Google Scholar
116.Kordyukov, Yu. A.. Egorov's theorem for transversally elliptic operators on foliated manifolds and noncommutative geodesic flow. Math. Phys. Anal. Geom. 8 (2005), 97119CrossRefGoogle Scholar
117.Kreimer, D.. On the Hopf algebra structure of perturbative quantum field theories. Adv. Theor. Math. Phys. 2 (1998), 303334CrossRefGoogle Scholar
118.Lance, E. C.. Hilbert C*-modules. A toolkit for operator algebraists. London Mathematical Society Lecture Note Series. Vol. 210. Cambridge University Press, Cambridge, 1995Google Scholar
119.Landi, G.. An introduction to noncommutative spaces and their geometries, Lecture Notes in Physics. New Series m: Monographs. Vol. 51. Springer-Verlag, Berlin, 1997Google Scholar
120.Libermann, P. and Marle, C.-M.. Geometry and Analytical Mechanics. Reidel, Dordrecht, 1987Google Scholar
121.Lichnerowicz, A.. Variétés symplectiques et dynamique attachée à une sous variété. C. R. Acad. Sc. Paris 280 (1975), 523527Google Scholar
122.Lichnerowicz, A.. Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geom. 12 (1977), 253300Google Scholar
123.Loday, J.-L.. Cyclic homology, Grundlehren der Mathematischen Wissenschaften. Vol. 301. Springer-Verlag, Berlin, 1998Google Scholar
124.Macho Stadler, M.. La conjecture de Baum-Connes pour un feuilletage sans holonomie de codimension un sur une variété fermée. Publ. Mat. 33 (1989), 445457CrossRefGoogle Scholar
125.Macho-Stadler, M.. Foliations, groupoids and Baum-Connes conjecture. J. Math. Sci. (N.Y.) 113 (2003), 637646CrossRefGoogle Scholar
126.Mackenzie, K.. Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Note Series. Vol. 124. Cambridge University Press, Cambridge, 1987Google Scholar
127.Manuilov, V. M. and Troitsky, E. V.. C*-Hilbert modules. Translated from the 2001 Russian original by the authors. Translations of Mathematical Monographs, 226. American Mathematical Society, Providence, RI, 2005CrossRefGoogle Scholar
128.Mardsen, J. E. and Weinstein, A.. Reduction os symplectic manifolds with symmetry. Rep. Math. Phys. 5 (1974), 121130Google Scholar
129.Milnor, J.. Construction of universal bundles I. Ann. of Math. 63 (1956), 272284CrossRefGoogle Scholar
130.Milnor, J.. Introduction to algebraic K-theory. Princeton University Press, Princeton, N.J., 1971Google Scholar
131.Milnor, J. W. and Stasheff, J. D.. Characteristic classes. Princeton University Press, Princeton, N. J., 1974CrossRefGoogle Scholar
132.Mishchenko, A. S.. Vector bundles and their applications (Russian). Nauka, Moscow, 1984Google Scholar
133.Moerdijk, I. and Mrčun, J.. Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics. Vol. 91. Cambridge University Press, Cambridge, 2003Google Scholar
134.Molino, P.. Classe d'Atiyah d'un feuilletage et connexions transverses projetables. C. R. Acad. Sci. Paris 272 (1971), 779781Google Scholar
135.Molino, P.. Géométrie globale des feuilletages riemanniens. Nederl. Akad. Wetensch. Indag. Math. 44 (1982), 4576CrossRefGoogle Scholar
136.Molino, P.. Riemannian foliations, Progress in Mathematics. Vol. 73. Birkhäuser Boston Inc., Boston, MA, 1988Google Scholar
137.Moore, C. C. and Schochet, C.. Global analysis on foliated spaces, Mathematical Sciences Research Institute Publications. Vol. 9. Springer-Verlag, New York, 1988Google Scholar
138.Moriyoshi, H.. On cyclic cocycles associated with the Godbillon-Vey classes. In Geometric study of foliations (Tokyo, 1993), p. 411423. World Sci. Publishing, River Edge, NJ, 1994Google Scholar
139.Moriyoshi, H. and Natsume, T.. The Godbillon-Vey cyclic cocycle and longitudinal Dirac operators. Pacific J. Math. 172 (1996), 483539CrossRefGoogle Scholar
140.Muhly, P. S., Renault, J. N., and Williams, D. P.. Equivalence and isomorphism for groupoid C*-algebras. J. Operator Theory 17 (1987), 322Google Scholar
141.Murphy, G. J.. C*-algebras and operator theory. Academic Press Inc., Boston, MA, 1990Google Scholar
142.Natsume, T.. The C*-algebras of codimension one foliations without holonomy. Math. Scand. 56 (1985), 96104CrossRefGoogle Scholar
143.Natsume, T.. Topological K-theory for codimension one foliations without holonomy. In Foliations (Tokyo, 1983), Adv. Stud. Pure Math. Vol. 5. p. 1527. North Holland, Amsterdam, 1985Google Scholar
144.O'Neill, . The fundamental equations of a submersion. Mich. Math. J. 13 (1966), 459469CrossRefGoogle Scholar
145.Paschke, W.. Inner product modules over B*-algebras. Trans. Amer. Math. Soc. 182 (1973), 443468Google Scholar
146.Paterson, A. L. T.. Groupoids, inverse semigroups and their operator algebras, Progress in Mathematics. Vol. 170. Birkhäuser, Basel, 1999Google Scholar
147.Pedersen, G. K.. C*-algebras and their automorphism groups, London Mathematical Society Monographs. Vol. 14. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1979Google Scholar
148.Perrot, D.. A Riemann-Roch theorem for one-dimensional complex groupoids. Commun. Math. Phys. 218 (2001), 373391CrossRefGoogle Scholar
149.Phillips, J.. The holonomic imperative and the homotopy groupoid of a foliated manifold. Rocky Mountain J. Math. 17 (1987), 151165CrossRefGoogle Scholar
150.Pimsner, M. and Voiculescu, D.. Exact sequences for K-groups and Ext-groups of certain cross-product C*-algebras. J. Operator Theory 4 (1980), 93118Google Scholar
151.Ponge, R.. A new short proof of local index formula and some of its applications. Commun. Math. Phys. 241 (2003), 215234CrossRefGoogle Scholar
152.Reeb, G.. Sur certains propriétés topologiques des variétés feuilletées., Actualité Sci. Indust. Vol. 1183. Hermann, Paris, 1952Google Scholar
153.Reinhart, B. L.. Differential geometry of foliations, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 99. Springer-Verlag, Berlin, 1983Google Scholar
154.Reinhart, B.L.. Foliated manifolds with bundle-like metrics. Ann. of Math. (2) 69 (1959), 119132CrossRefGoogle Scholar
155.Reinhart, B.L.. Harmonic integrals on foliated manifolds. Amer. J. Math. 81 (1959), 529536CrossRefGoogle Scholar
156.Renault, J.. A groupoid approach to C*-algebras, Lecture Notes in Mathematics, Vol. 793. Springer, Berlin, 1980Google Scholar
157.Rieffel, M. A.. Morita equivalence for C*-algebras and W*-algebras. J. Pure Appl. Algebra 5 (1974), 5196CrossRefGoogle Scholar
158.Rieffel, M. A.. C*-algebras associated with irrational rotations. Pac. J. Math. 93 (1981), 415429CrossRefGoogle Scholar
159.Rieffel, M. A.. Morita equivalence for operator algebras. In Operator algebras and applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math. Vol. 38. p. 285298. Amer. Math. Soc., Providence, R.I., 1982Google Scholar
160.Rørdam, M., Larsen, F., and Laustsen, N. J.. An Introduction to K-theory for C*- algebras. LMS Student Texts. Cambridge University Press, Cambridge, 2000CrossRefGoogle Scholar
161.Ruelle, D. and Sullivan, D.. Currents, flows and diffeomorphisms. Topology 14 (1975), 319327CrossRefGoogle Scholar
162.Sauvageot, J.-L.. Tangent bimodule and locality for dissipative operators on C*- algebras. In Quantum probability and applications. IV, Lecture Notes Math. Vol. 1396. p. 322338. Springer, Berlin Heidelberg New York, 1989Google Scholar
163.Sauvageot, J.-L.. Quantum Dirichlet forms, differential calculus and semigroups. In Quantum probability and applications. V, Lecture Notes Math. Vol 1442, p. 334346. Springer, Berlin Heidelberg New York, 1990Google Scholar
164.Sauvageot, J.-L.. Semi-groupe de la chaleur transverse sur la C*-algèbre d'un feuilletage riemannien. C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 531536Google Scholar
165.Sauvageot, J.-L.. Semi-groupe de la chaleur transverse sur la C*-algebre d'un feuilletage riemannien. J. Funct. Anal. 142 (1996), 511538CrossRefGoogle Scholar
166.Schweitzer, L.. A short proof that Mn(A) is local if A is local and Fréchet. Internat. J. Math. 3 (1992), 581589CrossRefGoogle Scholar
167.Shubin, M. A.. Pseudodifferential operators and spectral theory. Springer-Verlag, Berlin, 2001CrossRefGoogle Scholar
168.Skandalis, G.. Noncommutative geometry, the transverse signature operator, and Hopf algebras [after A. Connes and H. Moscovici]. In Cyclic homology in non-commutative geometry, Encyclopaedia Math. Sci. V. 121, p. 115134. Springer, Berlin, 2004. Translated from Astérisque No. 282 (2002), Exp. No. 892, p. 345–364; by Raphaël Ponge and Nick WrightGoogle Scholar
169.Spanier, E. H.. Algebraic topology. Springer-Verlag, New York, 1981CrossRefGoogle Scholar
170.Takai, H.. Baum-Connes conjectures and their applications. In Dynamical systems and applications (Kyoto, 1987), World Sci. Adv. Ser. Dynam. Systems, Vol. 5. p. 89116. World Sci. Publishing, Singapore, 1987Google Scholar
171.Takai, H.. A counterexample of strong Baum-Connes conjectures for foliated manifolds. In The study of dynamical systems (Kyoto, 1989), World Sci. Adv. Ser. Dynam. Systems, Vol. 7. p. 149154. World Sci. Publishing, Teaneck, NJ, 1989Google Scholar
172.Takai, H.. On the Baum-Connes conjecture. In Mappings of operator algebras (Philadelphia, PA, 1988), Progr.Math. Vol. 84. p. 183197. Birkhäuser, Boston, 1990Google Scholar
173.Takesaki, M.. Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes in Math. Vol. 128. Springer, New York, 1970Google Scholar
174.Takesaki, M.. Theory of operator algebras. I. Springer-Verlag, New York, 1979CrossRefGoogle Scholar
175.Taylor, M.. Pseudodifferential Operators. Princeton Univ. Press, Princeton, 1981CrossRefGoogle Scholar
176.Thom, R.. Generalisation de la theorie de Morse aux varietes feuilletees. Ann. Inst. Fourier 14 (1964), 173189CrossRefGoogle Scholar
177.Tondeur, Ph.. Geometry of foliations, Monographs in Mathematics. Vol. 90. Birkhäuser Verlag, Basel, 1997Google Scholar
178.Torpe, A. M.. K-theory for the leaf space of foliations by Reeb components. J. Funct. Anal. 61 (1985), 1571CrossRefGoogle Scholar
179.Trèves, F.. Introduction to pseudodifferential and Fourier integral operators. Vol. 1. Plenum Press, New York, 1980CrossRefGoogle Scholar
180.Trèves, F.. Introduction to pseudodifferential operators and Fourier integral operators. Vol. 2. Plenum Press, New York and London, 1980CrossRefGoogle Scholar
181.Tu, J.-L.. La conjecture de Baum-Connes pour les feuilletages moyennables. K-Theory 17 (1999), 215264CrossRefGoogle Scholar
182.Tu, J. L.. La conjecture de Novikov pour les feuilletages hyperboliques. K-Theory 16 (1999), 129184CrossRefGoogle Scholar
183.Wegge-Olsen, N. E.. K-theory and C*-algebras. A friendly approach. Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 1993CrossRefGoogle Scholar
184.Winkelnkemper, H. E.. The graph of a foliation. Ann. Glob. Anal. Geom. 1 (1983), 5375CrossRefGoogle Scholar
185.Wodzicki, M.. Noncommutative residue. Part I. Fundamentals. In K-theory, arithmetic and geometry (Moscow, 1984–86), Lecture Notes in Math. Vol. 1289. p. 320399. Springer, Berlin Heidelberg New York, 1987Google Scholar
186.Xu, Ping. Noncommutative Poisson algebras. Amer. J. Math. 116 (1994), 101125CrossRefGoogle Scholar