Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-11T05:30:46.320Z Has data issue: false hasContentIssue false

On Additive invariants of actions of additive and multiplicative groups

Published online by Cambridge University Press:  01 May 2013

Wenchuan Hu*
Affiliation:
School of Mathematics, Sichuan University, Chengdu 610064, P. R. Chinahuwenchuan@gmail.com
Get access

Abstract

Let X be an algebraic variety with an action of either the additive or multiplicative group. We calculate the additive invariants of X in terms of the additive invariants of the fixed point set, using a formula of Białynicki-Birula. The method is also generalized to calculate certain additive invariants for Chow varieties. As applications, we obtain results on the Hodge polynomial of Chow varieties in characteristic zero and the number of points for Chow varieties over finite fields. As applications, we obtain the l-adic Euler-Poincaré characteristic for the Chow varieties of certain projective varieties over a field of arbitrary characteristic. Moreover, we show that the virtual Hodge (p,0) and (0,q)-numbers of the Chow varieties and affine algebraic group varieties are zero for all p,q positive.

Type
Research Article
Copyright
Copyright © ISOPP 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

B-B1.Białynicki-Birula, A., On fixed point schemes of actions of multiplicative and additive groups. Topology 12 (1973), 99103.Google Scholar
B-B2.Białynicki-Birula, A., Some theorems on actions of algebraic groups. Ann. of Math. (21) 98 (1973), 480497.Google Scholar
Ca.Carrell, J. B., Holomorphic ℂ*-actions and vector fields on projective varieties. Topics in the theory of algebraic groups, 1–37, Notre Dame Math. Lectures 10, Univ. Notre Dame Press, Notre Dame, IN, 1982.Google Scholar
D1.Deligne, P., Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 557.CrossRefGoogle Scholar
D2.Deligne, P., Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 577.Google Scholar
DG.Demazure, M. and Gabriel, P., Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. (French) Avec un appendice 1t Corps de classes local par Michiel Hazewinkel, Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970. xxvi+700 pp.Google Scholar
E.Elizondo, J., The Euler series of restricted Chow varieties. Compositio Math. 94 (3) (1994), 297310.Google Scholar
EL.Elizondo, J. and Lima-Filho, P., P. Chow quotients and projective bundle formulas for Euler-Chow series. J. Algebraic Geom. 7 (4) (1998), 695729.Google Scholar
F.Fulton, W., Introduction to toric varieties. Annals of Mathematics Studies 131. The William H. Roever Lectures in Geometry. Princeton University Press, Princeton, NJ, 1993. xii+157 pp. ISBN: 0-691-00049-2Google Scholar
Ho.Horrocks, G., Fixed point schemes of additive group actions. Topology 8 (1969), 233242.CrossRefGoogle Scholar
Hu.Hu, W., Lawson-Yau Formula and its generalization. J. Pure Appl. Algebra 217 (1) (2013), 4553.Google Scholar
I.Isourcelusie, L., Miscellany on traces in ℓ-adic cohomology: a survey. (English summary) Jpn. J. Math. 1 (1) (2006), 107136.Google Scholar
K.Katz, N. M., Review of l-adic cohomology. Motives (Seattle, WA, 1991), 2130, Proc. Sympos. Pure Math. 55, Part 1, Amer. Math. Soc., Providence, RI, 1994.Google Scholar
Lau.Laumon, G., Comparaison de caractéristiques d'Euler-Poincaré en cohomologie l-adique. C. R. Acad. Sci. Paris Sér. I Math. 292 (3) (1981), 209212.Google Scholar
La.Lawson, H. B., Algebraic cycles and homotopy theory., Ann. of Math. 129 (1989), 253291.Google Scholar
LY.Lawson, H. B. and Yau, Stephen S. T., Holomorphic symmetries. Ann. Sci. École Norm. Sup. (4) 20 (4) (1987), 557577.Google Scholar
Lo.Loeser, F., Seattle lectures on motivic integration. Algebraic geometry—Seattle 2005. Part 2, 745784, Proc. Sympos. Pure Math. 80, Part 2, Amer. Math. Soc., Providence, RI, 2009.Google Scholar
R1.Rosenlicht, M., Some basic theorems on algebraic groups. Amer. J. Math. 78 (1956), 401443.CrossRefGoogle Scholar
R2.Rosenlicht, M., A remark on quotient spaces. An. Acad. Brasil. Ci. 35 (1963), 487489.Google Scholar