Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T14:54:04.318Z Has data issue: false hasContentIssue false

On (co)homology of Frobenius Poisson algebras

Published online by Cambridge University Press:  05 September 2014

Can Zhu
Affiliation:
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China, czhu@usst.edu.cn Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020 Antwerp, Belgium
Fred Van Oystaeyen
Affiliation:
Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020 Antwerp, Belgium, fred.vanoystaeyen@ua.ac.be
Yinhuo Zhang
Affiliation:
Department Mathematics and Statistics, University of Hasselt, Universitaire Campus, 3590 Diepeenbeek, Belgium, yinhuo.zhang@uhasselt.be
Get access

Abstract

In this paper, we study Poisson (co)homology of a Frobenius Poisson algebra. More precisely, we show that there exists a duality between Poisson homology and Poisson cohomology of Frobenius Poisson algebras, similar to that between Hochschild homology and Hochschild cohomology of Frobenius algebras. Then we use the non-degenerate bilinear form on a unimodular Frobenius Poisson algebra to construct a Batalin-Vilkovisky structure on the Poisson cohomology ring making it into a Batalin-Vilkovisky algebra.

Type
Research Article
Copyright
Copyright © ISOPP 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bry88.Brylinski, J. L., A differential complex for Poisson manifolds, J. Differential Geom. 28 (1988), 93114.CrossRefGoogle Scholar
CE56.Cartan, H., Eilenberg, S., Homological algebra, Princeton university Press, Princeton, 1956.Google Scholar
Do109.Dolgushev, V. A., The Van den Bergh duality and the modular symmetry of a Poisson variety, Selecta Math. 14 (2009), 199228.CrossRefGoogle Scholar
Eu10.Eu, C., The calculus structure of the Hochschild homology/cohomology of preprojective algebras of Dynkin quivers, J. Pure Applied Algebra 214 (2010), 2846.CrossRefGoogle Scholar
ES09.Eu, C., Schedler, T., Calabi-Yau Frobenius algebras, J. Algebra 321 (2009), 774815.CrossRefGoogle Scholar
Ger63.Gerstenhaber, M., The cohomology structure of an associative ring, Ann. of Math. 78 (1963), 267288.CrossRefGoogle Scholar
Gin06.Ginzburg, V., Calabi-Yau algebras, arXiv: math. AG/0612139.Google Scholar
HKR62.Hochschild, G., Kostant, B., Rosenberg, A., Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962), 383408.CrossRefGoogle Scholar
Hue90.Huebschmann, J., Poisson cohomology and quantization, J. Reine Angew. Math. 408 (1990), 57113.Google Scholar
Kas88.Kassel, C., L'homologie cyclique des algèbres enveloppantes, (French) [The cyclic homology of enveloping algebras], Invent. Math. 91 (1988), 221251.CrossRefGoogle Scholar
Kon03.Kontsevich, M., Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), 157216.CrossRefGoogle Scholar
LR07.Launois, S., Richard, L., Twisted Poincaré duality for some quadratic Poisson algebras, Lett. Math. Phys. 79 (2007), 161174.CrossRefGoogle Scholar
LR09.Launois, S., Richard, L., Poisson (co)homology of truncated polynomial algebras in two variables, C. R. Math. Acad. Sci. Paris 347 (2009), 133138.CrossRefGoogle Scholar
LPV13.Laurent-Gengoux, C., Pichereau, A. and Vanhaecke, P., Poisson structures, Springer, Heidelberg, 2013.CrossRefGoogle Scholar
Lic77.Lichnerowicz, A., Les variétés de Poisson et leurs algèbres de Lie associées, (French), J. Differential Geometry 12 (1977), 253300.CrossRefGoogle Scholar
Men04.Menichi, L., Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras, K-Theory 32 (2004), 231251.CrossRefGoogle Scholar
Oh99.Oh, S. Q., Poisson enveloping algebras, Comm. Algebra 27 (1999), 21812186.CrossRefGoogle Scholar
Sm96.Smith, S. P., Some finite dimensional algebras related to elliptic curves, CMS Conf. Proc. 19 (1996), 315348.Google Scholar
Tra08.Tradler, T., The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products, Ann. Inst. Fourier 58 (2008), 23512379.CrossRefGoogle Scholar
Xu99.Xu, P., Gerstenhaber algebras and BV-algebras in Poisson geometry, Commun. Math. Phys. 200 (1999), 545560.CrossRefGoogle Scholar