Article contents
On the algebraic K-theory of formal power series
Published online by Cambridge University Press: 04 April 2012
Abstract
In this paper we extend the computation of the the typical curves of algebraic K-theory done by Lars Hesselholt and Ib Madsen to general tensor algebras. The models used allow us to determine the stages of the Taylor tower of algebraic K-theory as a functor of augmented algebras, as defined by Tom Goodwillie, when evaluated on derived tensor algebras.
For R a discrete ring, and M a simplicial R-bimodule, we let R(M) denote the (derived) tensor algebra of M over R, and πR denote the ring of formal (derived) power series in M over R. We define a natural transformation of functors of simplicial R-bimodules Φ: which is closely related to Waldhausen's equivalence We show that Φ induces an equivalence on any finite stage of Goodwillie's Taylor towers of the functors at any simplicial bimodule. This is used to show that there is an equivalence of functors , and for connected bimodules, also an equivalence
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © ISOPP 2012
References
- 1
- Cited by