Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T21:33:55.788Z Has data issue: false hasContentIssue false

Report on locally finite triangulated categories

Published online by Cambridge University Press:  21 November 2011

Henning Krause
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany. hkrause@math.uni-bielefeld.de
Get access

Abstract

The basic properties of locally finite triangulated categories are discussed. The focus is on Auslander–Reiten theory and the lattice of thick subcategories.

Type
Research Article
Copyright
Copyright © ISOPP 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Amiot, C., On the structure of triangulated categories with finitely many indecomposables, Bull. Soc. Math. France 135 (2007), no. 3, 435474.CrossRefGoogle Scholar
2.Armstrong, D., Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc. 202 (2009), no. 949, x+159 pp.Google Scholar
3.Auslander, M., Representation theory of Artin algebras. II, Comm. Algebra 1 (1974), 269310.CrossRefGoogle Scholar
4.Auslander, M., Functors and morphisms determined by objects, in Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976), 1–244. Lecture Notes in Pure Appl. Math. 37, Dekker, New York, 1978.Google Scholar
5.Auslander, M. and Reiten, I., Representation theory of Artin algebras. III. Almost split sequences, Comm. Algebra 3 (1975), 239294.CrossRefGoogle Scholar
6.Auslander, M., Reiten, I. and Smalø, S. O., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge Univ. Press, Cambridge, 1995.Google Scholar
7.Bautista, R., Irreducible morphisms and the radical of a category, An. Inst. Mat. Univ. Nac. Autónoma México 22 (1982), 83135 (1983).Google Scholar
8.BeĬlinson, A. A., Coherent sheaves on Pn and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 6869.CrossRefGoogle Scholar
9.Beligiannis, A., On the Freyd categories of an additive category, Homology Homotopy Appl. 2 (2000), 147185.CrossRefGoogle Scholar
10.Beligiannis, A., Relative homological algebra and purity in triangulated categories, J. Algebra 227 (2000), no. 1, 268361.CrossRefGoogle Scholar
11.Beligiannis, A., Auslander-Reiten triangles, Ziegler spectra and Gorenstein rings, K-Theory 32 (2004), no. 1, 182.CrossRefGoogle Scholar
12.Bondal, A. I., Representations of associative algebras and coherent sheaves, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 2544; translation in Math. USSRIzv. 34 (1990), no. 1, 23–42.Google Scholar
13.Bondal, A. I. and Kapranov, M. M., Representable functors, Serre functors, and reconstructions, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 11831205, 1337; translation in Math. USSR-Izv. 35 (1990), no. 3, 519–541.Google Scholar
14.Brüning, K., Thick subcategories of the derived category of a hereditary algebra, Homology, Homotopy Appl. 9 (2007), no. 2, 165176.CrossRefGoogle Scholar
15.Buan, A. B. et al., Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572618.CrossRefGoogle Scholar
16.Buchweitz, R.-O., Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, unpublished manuscript (1987), 155 pp.Google Scholar
17.Crawley-Boevey, W., Exceptional sequences of representations of quivers, in Proceedings of the Sixth International Conference on Representations of Algebras (Ottawa, ON, 1992), 7 pp, Carleton-Ottawa Math. Lecture Note Ser. 14, Carleton Univ., Ottawa, ON, 1992.Google Scholar
18.Dowbor, P., Ringel, C. M. and Simson, D., Hereditary Artinian rings of finite representation type, in Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), 232241, Lecture Notes in Math. 832, Springer, Berlin, 1980.Google Scholar
19.Dyer, M. J., On minimal lengths of expressions of Coxeter group elements as products of reflections, Proc. Amer. Math. Soc. 129 (2001), no. 9, 25912595.CrossRefGoogle Scholar
20.Freyd, P., Stable homotopy, in Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), 121172, Springer, New York, 1966.CrossRefGoogle Scholar
21.Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323448.CrossRefGoogle Scholar
22.Gabriel, P., Indecomposable representations. II, in Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), 81104, Academic Press, London, 1973.Google Scholar
23.Gabriel, P., Auslander-Reiten sequences and representation finite algebras, Lect. Notes Math. 831, Springer-Verlag (1980), 171.Google Scholar
24.Happel, D., On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987), no. 3, 339389.CrossRefGoogle Scholar
25.Happel, D., Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series 119, Cambridge Univ. Press, Cambridge, 1988.Google Scholar
26.Happel, D., Preiser, U. and Ringel, C. M., Binary polyhedral groups and Euclidean diagrams, Manuscripta Math. 31 (1980), no. 1-3, 317329.CrossRefGoogle Scholar
27.Happel, D., Preiser, U. and Ringel, C. M., Vinberg’s characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules, in Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), 280294, Lecture Notes in Math. 832, Springer, Berlin, 1980.Google Scholar
28.Igusa, K. and Schiffler, R., Exceptional sequences and clusters, J. Algebra 323 (2010), no. 8, 21832202.CrossRefGoogle Scholar
29.Ingalls, C. and Thomas, H., Noncrossing partitions and representations of quivers, Compos. Math. 145 (2009), no. 6, 15331562.CrossRefGoogle Scholar
30.Jensen, C. U. and Lenzing, H., Model-theoretic algebra with particular emphasis on fields, rings, modules, Gordon and Breach, New York, 1989.Google Scholar
31.Kac, V. G., Infinite-dimensional Lie algebras, second edition, Cambridge Univ. Press, Cambridge, 1985.Google Scholar
32.Keller, B., Chain complexes and stable categories, Manuscripta Math. 67 (1990), no. 4, 379417.CrossRefGoogle Scholar
33.Keller, B., On triangulated orbit categories, Doc. Math. 10 (2005), 551581.CrossRefGoogle Scholar
34.Kelly, G. M., On the radical of a category, J. Austral. Math. Soc. 4 (1964), 299307.CrossRefGoogle Scholar
35.Kerner, O., Representations of wild quivers, in Representation theory of algebras and related topics (Mexico City, 1994), 65107, CMS Conf. Proc. 19, Amer. Math. Soc., Providence, RI, 1996.Google Scholar
36.Köhler, C., Thick subcategories of finite algebraic triangulated categories, arXiv:1010.0146v1 [math.CT].Google Scholar
37.Krause, H., Smashing subcategories and the telescope conjecture—an algebraic approach, Invent. Math. 139 (2000), no. 1, 99133.CrossRefGoogle Scholar
38.Krause, H., Auslander-Reiten theory via Brown representability, K-Theory 20 (2000), no. 4, 331344.CrossRefGoogle Scholar
39.Krause, H., Localization theory for triangulated categories, in Triangulated categories, 161235, London Math. Soc. Lecture Note Ser. 375, Cambridge Univ. Press, Cambridge, 2010.Google Scholar
40.Krause, H., Stovicek, J., The telescope conjecture for hereditary rings via Ext-orthogonal pairs, Adv. Math. 225 (2010), no. 5, 23412364.CrossRefGoogle Scholar
41.Liu, S., Auslander-Reiten theory in a Krull-Schmidt category, preprint.Google Scholar
42.Muro, F., Schwede, S. and Strickland, N., Triangulated categories without models, Invent. Math. 170 (2007), no. 2, 231241.CrossRefGoogle Scholar
43.Riedtmann, C., Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), no. 2, 199224.CrossRefGoogle Scholar
44.Riedtmann, C., Representation-finite self-injective algebras of class Dn, Compositio Math. 49 (1983), no. 2, 231282.Google Scholar
45.Ringel, C. M., The braid group action on the set of exceptional sequences of a hereditary Artin algebra, in Abelian group theory and related topics (Oberwolfach, 1993), 339352, Contemp. Math. 171, Amer. Math. Soc., Providence, RI, 1994.Google Scholar
46.Thomason, R. W., The classification of triangulated subcategories, Compositio Math. 105 (1997), no. 1, 127.CrossRefGoogle Scholar
47.Van den Bergh, M., The signs of Serre duality, Appendix A to R. Bocklandt, Graded Calabi Yau algebras of dimension 3, J. Pure Appl. Algebra 212 (2008), no. 1, 1432.Google Scholar
48.Verdier, J.-L., Des catégories dérivées des catégories abéliennes, Astérisque No. 239 (1996), xii+253 pp. (1997).Google Scholar
49.Waschbüsch, J., Symmetrische Algebren vom endlichen Modultyp, J. Reine Angew. Math. 321 (1981), 7898.Google Scholar
50.Yoshino, Y., Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series 146, Cambridge Univ. Press, Cambridge, 1990.Google Scholar
51.Xiao, J. and Zhu, B., Locally finite triangulated categories, J. Algebra 290 (2005), no. 2, 473490.CrossRefGoogle Scholar