Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T22:36:50.108Z Has data issue: false hasContentIssue false

Biofilms and their role in otorhinolaryngological disease

Published online by Cambridge University Press:  11 April 2008

E Macassey*
Affiliation:
Department of Otorhinolaryngology, Dunedin Public Hospital, New Zealand
P Dawes
Affiliation:
Department of Otorhinolaryngology, Dunedin Public Hospital, New Zealand
*
Address for correspondence: Dr Emily Macassey, Department of Otorhinolaryngology, Dunedin Public Hospital, Great King Street, Dunedin, New Zealand. Fax: 006434747956 E-mail: Emily.macassey@healthotago.co.nz

Abstract

Objective:

To describe the pathophysiology of biofilm communities and their role in otorhinolaryngological disease, with reference to the published literature.

Design:

Review of relevant literature, using Medline and the combined search terms ‘biofilms’ and ‘otorhinolaryngology’, and also various related keywords such as ‘tonsil’ and ‘adenoid’.

Results:

Description of biofilm pathophysiology and of published reports of biofilms in otorhinolaryngological disease.

Conclusion:

Virtually all microbes live in biofilm communities. Within these communities, the microbes assume differing specialised roles which confer survival advantages on the community. These communities cause chronic and device-associated infections. Within the specialist field of otorhinolaryngology, biofilms have been shown to play a role in many infections, including: chronic otitis media, cholesteatoma, chronic tonsillitis, chronic sinusitis, and infections of tracheostomies, endotracheal tubes and cochlear implants.

Type
Review Articles
Copyright
Copyright © JLO (1984) Limited 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Dunne, WM. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 2002;15:155–66CrossRefGoogle ScholarPubMed
2Costerton, JW, Geesey, GG, Cheng, KJ. How bacteria stick. Sci Am 1978;238:8695CrossRefGoogle ScholarPubMed
3Wilson, M. Bacterial biofilms and human disease. Sci Prog 2001;84:235–42CrossRefGoogle ScholarPubMed
4Donlan, RM, Costerton, JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002;15:167–93CrossRefGoogle ScholarPubMed
5Wimpenny, J, Manz, W, Szewzyk, U.Heterogeneity in biofilms. FEMS Microbio Rev 2000;24:661–71CrossRefGoogle ScholarPubMed
6Post, C, Stoodley, P, Hall-Stoodley, L, Erlich, G. The role of biofilms in otolaryngologic infections. Curr Opin Otolaryngol Head Neck Surg 2004;12:185–90CrossRefGoogle ScholarPubMed
7Withers, H, Swift, S, Williams, P. Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr Opin Microbiol 2001;4:186–93CrossRefGoogle ScholarPubMed
8Prince, A. Biofilms, antimicrobial resistance and airway infection. N Eng J Med 2002;347:1110–11CrossRefGoogle ScholarPubMed
9Palmer, J. Bacterial biofilms in chronic rhinosinusitis. Ann Otol Rhinol Laryngol 2006;115:35–9CrossRefGoogle Scholar
10Hong, W, Mason, K, Jurcisek, J, Novotny, L, Bakaletz, LO, Swords, WE. Phosphorylcholine decreases early inflammation and promotes the establishment of stable biofilm communities of nontypeable Haemophilus influenzae strain 86-028NP in a Chinchilla model of otitis media. Infect Immun 2007;75:958–65CrossRefGoogle Scholar
11Ceri, H, Olson, ME, Stremick, C, Read, RR, Morck, D, Buret, A. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999;37:1771–6CrossRefGoogle ScholarPubMed
12Stewart, P, Costerton, JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001;358:135–8CrossRefGoogle ScholarPubMed
13Parsek, M, Fuqua, C. Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol 2004;186:4427–40CrossRefGoogle ScholarPubMed
14Gordon, CA, Hodges, NA, Marriott, C. Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J Antimicrob Chem 1988;22:667–74CrossRefGoogle ScholarPubMed
15Eng, RHK, Padberg, FT, Smith, SM, Tan, EN, Cherubin, CE. Bacterial effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob Agents Chemother 1991;35:1824–8CrossRefGoogle ScholarPubMed
16Drenkard, E, Ausubel, FM. Pseudomonas biofilm formation and antibiotics resistance are linked to phenotypic variation. Nature 2002;416:740–3CrossRefGoogle ScholarPubMed
17Parsek, M, Singh, P. Bacterial biofilms: an emerging link to disease pathogenesis. Ann Rev Microbiol 2003;57:677701CrossRefGoogle ScholarPubMed
18Stephens, C. Microbiology: breaking down biofilms. Curr Biol 2002;12(4):132134CrossRefGoogle ScholarPubMed
19Giacometti, A, Cirioni, O, Gov, Y, Ghiselli, R, Del Prete, MS, Mocchegiani, F et al. RNA III inhibiting peptide inhibits in vivo biofilm formation by drug-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2003;47:1979–83CrossRefGoogle ScholarPubMed
20Elving, G, Van der Mei, H, Busscher, H, Van Weissenbruch, R, Albers, F. Influence of different combinations of bacteria and yeast in voice prosthesis biofilms on air flow resistance. Antonie van Leeuwenhoek 2003;83:4555CrossRefGoogle ScholarPubMed
21Van Den Hoogen, FF, Oudes, MJ, Hombergen, G, Nijdam, HF, Manni, JJ. The Groningen, Nijdam and Provox voice prostheses: a prospective clinical comparison based on 845 replacements. Acta Otolaryngol 1996;116:119–24CrossRefGoogle ScholarPubMed
22Holmes, A, van der Wielen, P, Cannon, R, Ruske, D, Dawes, P. Candida albicans binds to saliva proteins selectively adsorbed to silicone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:488–94CrossRefGoogle ScholarPubMed
23Elving, G, Van der Mei, H, Busscher, H, Van Weissenbruch, R, Albers, F. Comparison of the microbial composition of voice prothesis biofilms from patients requiring frequent versus infrequent replacement. Ann Otol Rhinol Laryngol 2002;111:200–3CrossRefGoogle Scholar
24Oosterhof, J, Elving, G, Stokroos, I, Van Nieuw Amerongen, A, Van Der Mei, H, Busscher, H et al. The influence of antimicrobial peptides and mucolytics on the integrity of biofilms consisting of bacteria and yeasts as affecting voice prosthetic air flow resistances. Biofouling 2003;19:347–53CrossRefGoogle ScholarPubMed
25Elving, GJ, van der Mei, HC, van Weissenbrunch, R, Albers, FWJ, Busscher, HJ. Effect of antifungal agents on indwelling voice prosthetic biofilms. Curr Opin Otolaryngol Head Neck Surg 2000;8:165–8CrossRefGoogle Scholar
26Ackerstaff, A, Hilgers, F, Meeuwis, C, van der Velden, L, van der Hoogen, R, Marres, H et al. Multi-institutional assessment of the Provox 2 voice prothesis. Arch Otolaryngol Head Neck Surg 1999;125:167–73CrossRefGoogle Scholar
27Van Weissenbruch, R, Bouckaert, S, Remon, JP, Nelis, H, Aerts, R, Albers, F. Chemoprophylaxis of fungal deterioration of the provox silicone tracheoesophageal prosthesis in postlaryngectomy patients. Ann Otol Rhinol Laryngol 1997;106:329–37CrossRefGoogle ScholarPubMed
28Everaert, EP, Mahieu, H, van de Belt-Gritter, , Peeters, J, Verkerke, G, van der Mei, H et al. Biofilm formation in vivo on perfluoro-alkylsiloxane-modified voice protheses. Arch Otolaryngol Head Neck Surg 1999;125:1329–32CrossRefGoogle Scholar
29Kay, D, Nelson, M, Rosenfeld, R. Meta-analysis of tympanostomy tube sequelae. Otolaryngol Head Neck Surg 2001;124:374–80CrossRefGoogle ScholarPubMed
30Saidi, I, Biedlingmaier, J, Whelan, P. In vivo resistance to bacterial biofilm formation on tympanostomy tubes as a function of tube material. Otolaryngol Head Neck Surg 1999;120:621–7CrossRefGoogle ScholarPubMed
31Mehta, A, Lee, J, Stevens, G, Antonelli, P. Opening plugged tympanostomy tubes: effect of biofilm formation. Otolaryngol Head Neck Surg 2003;134:121–5CrossRefGoogle Scholar
32Berry, J, Biedlingmaier, JF, Whelan, P. In vitro resistance to bacterial biofilm formation on coated fluoroplastic tympanostomy tubes. Otolaryngol Head Neck Surg 2000;123:246–51CrossRefGoogle ScholarPubMed
33Biedlingmaier, J, Samaranayake, R, Whelan, P. Resistance to biofilm formation on otologic implant materials. Otolaryngol Head Neck Surg 1998;118:444–51Google ScholarPubMed
34Cunningham, CD, Slattery, WH, Luxford, W. Postoperative infection in cochlear implant patients. Otolaryngol Head Neck Surg 2004;131:109–14CrossRefGoogle ScholarPubMed
35Pawlowski, KS, Wawro, D, Roland, PS. Bacterial biofilm formation on a human cochlear implant. Otol Neurotol 2005;26;972–5CrossRefGoogle ScholarPubMed
36Antonelli, PJ, Lee, JC, Burne, RA. Bacterial biofilms may contribute to persistent cochlear implant infection. Otol Neurotol 2004;25:953–7CrossRefGoogle ScholarPubMed
37Lustig, LR, Arts, HA, Brackmann, DE, Francis, HF, Molony, T, Megerian, CA et al. Hearing rehabilitation using the BAHA bone-anchored hearing aid: results in 40 patients. Otol Neurotol 2001;22:328–34CrossRefGoogle ScholarPubMed
38Ramadan, H, Sanclement, J, Thomas, J. Chronic rhinosinusitis and biofilms. Otolaryngol Head Neck Surg 2005;132:414–17CrossRefGoogle ScholarPubMed
39Sanderson, AR, Leid, JG, Hunsaker, D. Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis. Laryngoscope 2006;116:1121–6CrossRefGoogle ScholarPubMed
40Palmer, J. Bacterial biofilms: do they play a role in chronic sinusitis? Otolaryngol Clin North Am 2005;38:1193–201CrossRefGoogle ScholarPubMed
41Palmer, J. Bacterial biofilms in chronic rhinosinusitis. Ann Otol Rhinol Laryngol 2006;115:35–9CrossRefGoogle Scholar
42Wallwork, B, Coman, W, Mackay-Sim, A, Grieff, L, Cervin, A. Controlled trial of macrolide in the treatment of chronic rhinosinusitis. Laryngoscope 2006;116:189–93CrossRefGoogle ScholarPubMed
43Wozniak, DJ, Keyser, R. Effects of sub inhibitory concentrations on Pseudomonas aeruginosa. Chest 2004;125:S6269CrossRefGoogle ScholarPubMed
44Kania, RE, Lamers, GE, Vonk, MJ, Ba Huy, PT, Hiemstra, PS, Bloemberg, GV et al. Demonstration of bacterial cells and glycocalyx in biofilms on human tonsils. Arch Otolaryngol Head Neck Surg 2007;133:115–21CrossRefGoogle ScholarPubMed
45Chole, R, Faddis, B. Anatomical evidence of microbial biofilms in tonsillar tissues. Arch Otolaryngol Head Neck Surg 2003;129:634–6CrossRefGoogle ScholarPubMed
46Abdul-Baqi, KJ, Shakhatreh, FM, Khader, QA. Use of adenoidectomy and adenotonsillectomy in children with otitis media with effusion. Ear Nose Throat J 2001;80:647–50CrossRefGoogle ScholarPubMed
47Ungkanont, K, Damrongsak, S. Effect of adenoidectomy in children with complex problems of rhinosinusitis and associated diseases. Int J Pediatr Otorhinolaryngol 2004;68:447–51CrossRefGoogle ScholarPubMed
48Zuliani, G, Carron, M, Gurrola, J, Coleman, C, Haupert, M, Bert, R et al. Identification of adenoid biofilms in chronic rhinosinusitis. Int J Pediatr Otorhinolaryngol 2006;70:1613–17CrossRefGoogle ScholarPubMed
49Coticchia, J, Zuliani, G, Coleman, C, Carron, M, Gurrola, J 2nd, Haupert, M et al. Biofilms surface area in the pediatric nasopharynx. Chronic rhinosinusitis vs obstructive sleep apnea. Arch Otolaryngol Head Neck Surg 2007;133:110–14CrossRefGoogle ScholarPubMed
50Post, JC. Direct evidence of bacterial biofilms in otitis media. Laryngoscope 2001;111:2083–94CrossRefGoogle ScholarPubMed
51Ehrlich, G, Veeh, R, Wang, X, Costerton, JW, Hayes, J, Hu, FZ et al. Mucosal biofilm formation on middle-ear mucosa of the chincilla model of otitis media. JAMA 2002;287:1710–15CrossRefGoogle Scholar
52Hall-Stoodley, L, Hu, FZ, Gieseke, A, Nistico, L, Nguyen, D, Hayes, J et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 2006;296:202–11CrossRefGoogle ScholarPubMed
53Roland, PS. Chronic suppurative otitis media: a clinical overview. Ear Nose Throat J 2002;81:811Google ScholarPubMed
54Dohar, JE, Hebda, PA, Veeh, R, Awad, M, Costerton, JW, Hayes, J et al. Mucosal biofilm formation on middle-ear mucosa in a nonhuman primate model of chronic suppurative otitis media. Laryngoscope 2005;115:1469–72CrossRefGoogle Scholar
55Chole, R, Faddis, B. Evidence for microbial biofilms in cholesteatomas. Arch Otolaryngol Head Neck Surg 2002;128:1129–33CrossRefGoogle ScholarPubMed
56Wang, E, Jung, J, Pashia, M, Nason, R, Scholnick, S, Chole, R. Otopathogenic Pseudomonas aeruginosa strains as competent biofilm formers. Arch Otolaryngol Head Neck Surg 2005;131:983–9CrossRefGoogle ScholarPubMed