Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T22:50:27.010Z Has data issue: false hasContentIssue false

Screening for gap junction protein beta-2 gene mutations in Malays with autosomal recessive, non-syndromic hearing loss, using denaturing high performance liquid chromatography

Published online by Cambridge University Press:  20 March 2008

Z Siti Aishah
Affiliation:
Human Genome Centre, Universiti Sains Malaysia, Kelantan, Malaysia
M D Mohd Khairi*
Affiliation:
Department of Otorhinolaryngology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
A R Normastura
Affiliation:
Schools of Dental Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
Z Zafarina
Affiliation:
Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
B A Zilfalil
Affiliation:
Human Genome Centre, Universiti Sains Malaysia, Kelantan, Malaysia
*
Address for correspondence: Dr M D Mohd Khairi, Department of Otorhinolaryngology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia. E-mail: khairi@kck.usm.my

Abstract

Objective:

To determine the frequency and type of gap junction protein beta-2 gene mutations in Malay patients with autosomal recessive, non-syndromic hearing loss.

Methods:

A total of 33 Malay patients with autosomal recessive, non-syndromic hearing loss were screened for mutations in the Cx26 coding region. Deoxyribonucleic acid was extracted from buccal swab samples and subjected to polymerase chain reaction. Slow-reannealing was performed, followed by screening using denaturing high performance liquid chromatography.

Results:

Eight of the samples (24.2 per cent) showed heterozygous peaks, and further sequencing of these samples revealed four patients (50.0 per cent) with the W24X mutation, two (25.0 per cent) with the V37I mutation and another two (25.0 per cent) with the G4D mutation.

Conclusions:

Analysis of buccal swab samples by denaturing high performance liquid chromatography is noninvasive and suitable for rapid and reliable screening of gap junction protein beta-2 gene mutations in patients with autosomal recessive, non-syndromic hearing loss. Malay patients with autosomal recessive, non-syndromic hearing loss have different kinds of gap junction protein beta-2 gene mutations which are rarely found in other populations.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Watkin, PM. Neonatal otoacoustic emission screening and the identification of deafness. Arch Dis Child 1996;74:F1625CrossRefGoogle ScholarPubMed
2Finitzo, T, Albright, K, O'Neal, J. The newborn with hearing loss: detection in the nursery. Paediatrics 1998;102:1452–60CrossRefGoogle ScholarPubMed
3Mason, JA, Herrmann, KR. Universal infant hearing screening by automated auditory brainstem response measurement. Paediatrics 1998;101:221–8CrossRefGoogle ScholarPubMed
4Vohr, BR, Carty, LM, Moore, PE, Letourneau, K. The Rhode Island Hearing Assessment Program: experience with statewide hearing screening (1993–1996). J Pediatr 1998;133:353–7CrossRefGoogle ScholarPubMed
5Watkin, PM, Baldwin, M. Confirmation of deafness in infancy. Arch Dis Child 1999;81:380–9CrossRefGoogle ScholarPubMed
6Shannon, DA, Felix, JK, Krumholz, A, Goldstein, PJ, Harris, KC. Hearing screening of high-risk newborns with brainstem auditory evoked potentials: a follow up study. Paediatrics 1984;73:22–6CrossRefGoogle ScholarPubMed
7Watkin, PM, Baldwin, M, McEnergy, G. Neonatal at risk screening and the identification of deafness. Arch Dis Child 1991;66:1130–5CrossRefGoogle ScholarPubMed
8Watson, DR, McClelland, RJ, Adams, DA. Auditory brainstem response screening for hearing loss in high risk neonates. Int J Pediatr Otorhinolaryngol 1996;36:147–83CrossRefGoogle ScholarPubMed
9Hess, M, Finckh-Kramer, U, Bartsch, M, Kewitz, G, Versmold, H, Gross, M. Hearing screening in at-risk neonate cohort. Int J Pediatr Otorhinolaryngol 1998;46:81–9CrossRefGoogle ScholarPubMed
10Jan, CM, Hildmann, WA, Henneckeet, KH. Neonatal screening for hearing disorders in infants at risk: incidence, risk factors, and follow up. Paediatrics 1999;104:900–4Google Scholar
11Khairi, MD, Din, S, Shahid, H, Normastura, AR. Hearing screening of infants in Neonatal Unit, Hospital Universiti Sains Malaysia using transient evoked otoacoustic emissions. J Laryngol Otol 2005;119:678–83CrossRefGoogle ScholarPubMed
12Tomaski, SM, Grundfast, KM. A stepwise approach to the diagnosis and treatment of hereditary hearing loss. Pediatr Clin North Am 1999;46:3548CrossRefGoogle Scholar
13Laer, LV, Coucke, P, Mueller, RF, Caethoven, G, Flothmann, K, Prasad, SD et al. A common founder for the 35delG GJB2 gene mutation in connexin 26 hearing impairment. J Med Genet 2001;38:515–18CrossRefGoogle ScholarPubMed
14Abe, S, Usami, S, Shinkawa, H, Kelley, PM, Kimberling, WJ. Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet 2000;37:41–3CrossRefGoogle ScholarPubMed
15Ruszymah, BHI, Farah Wahida, I, Zakinah, Y, Zahari, Z, Norazlinda, MD, Saim, L, et al. Congenital deafness: high prevalence of a V37I mutation in the GJB2 gene among deaf schoolchildren in Alor Setar. Med J Malaysia 2005;60:269–74Google Scholar
16Morell, RJ, Kim, HJ, Hood, LJ, Goforth, L, Friderici, K, Fisher, R et al. Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med 1998;339:1500–05CrossRefGoogle ScholarPubMed
17Zelante, L, Gasparini, P, Estivill, X, Melchionda, S, D'Agruma, L, Govea, N et al. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 1997;9:1605–9CrossRefGoogle Scholar
18Rabionet, R, Gasparini, P, Estivill, X. Molecular genetics of hearing impairment due to mutations in gap junction genes encodes beta connexins. Hum Mutat 2000;16:1902023.0.CO;2-I>CrossRefGoogle ScholarPubMed
19Lin, D, Goldstein, JA, Mhatre, AN, Lustig, LR, Pfister, M, Lalwani, AK. Assessment of denaturing high-performance liquid chromatography (DHPLC) in screening for mutations in connexin 26 (GJB2). Hum Mutat 2001;18:4251CrossRefGoogle ScholarPubMed
20Gurtler, N, Kim, Y, Mhatre, A, Muller, R, Probst, R, Lalwani, AK. GJB2 Mutations in the Swiss hearing impaired. Ear Hear 2003;24:440–7CrossRefGoogle ScholarPubMed
21Kudo, T, Ikeda, K, Oshima, T, Kure, S, Tammasaeng, M, Prasansuk, S et al. GJB2 (Connexin 26) mutations and childhood deafness in Thailand. Otol Neurotol 2001;22:858–61CrossRefGoogle ScholarPubMed
22Pampanos, A, Economides, J, Iliadou, V, Neou, P, Leotsakos, P, Voyiatzis, N et al. Prevalence of GJB2 mutations in prelingual deafness in the Greek population. Int J Pediatr Otorhinolaryngol 2002;65:101–8CrossRefGoogle ScholarPubMed
23Najmabadi, H, Cucci, RA, Sahebjam, S, Kouchakian, N, Farhadi, M, Kahrizi, K et al. GJB2 mutations in Iranians with autosomal recessive non-syndromic sensorineural hearing loss. Hum Mutat 2002; http://www.interscience.wiley.com/humanmutation/pdf/mutation/504.pdf; [5 February 2008]CrossRefGoogle ScholarPubMed
24Schade, G, Kothe, C, Ruge, G, Hess, M, Meyer, CG. Screening auf GJB2-Mutationen mit Wangenabstrichmaterial zur nicht-invasiven Diagnostik genetisch bedingter Innenohrschwerhörigkeit [in German]. Laryngo-Rhino-Otol 2003;82:397401Google Scholar
25Maheshwari, M, Vijaya, R, Ghosh, M, Shastri, S, Kabra, M, Menon, PSN. Screening of Families with autosomal recessive non-syndromic hearing impairment (ARNSHI) for mutations in GJB2 gene: Indian scenario. Am J Med Genet 2003;120A:180–4CrossRefGoogle ScholarPubMed
26Santos, RLP, Wajid, M, Pham, TL, Hussan, J, Ali, G, Ahmad, W et al. Low prevalence of connexin 26 (GJB2) variants in Pakistani families with autosomal recessive non-syndromic hearing impairment. Clinic Genet 2005;67:61–8CrossRefGoogle ScholarPubMed
27Minarik, G, Ferak, V, Ferakova, E, Ficek, A, Polakova, H, Kadasi, L. High frequency of GJB2 mutation W24X among Slovak Romany (Gypsy) patients with non-syndromic hearing loss (NSHL). Gen Physiol Biophys 2003;22:549–56Google ScholarPubMed
28Alvarez, A, del Castillo, I, Villamar, M, Aguirre, LA, lez-Neira, AG. High prevalence of the W24X mutation in the gene encoding connexin-26 (GJB2) in Spanish Romani (Gypsies) with autosomal recessive non-syndromic hearing loss. Am J Med Genet 2005;137A:255–8CrossRefGoogle ScholarPubMed
29Kalay, E, Caylan, R, Kremer, H, de Brouwer, APM, Karaguzel, A. GJB2 mutations in Turkish patients with ARNSHL: prevalence and two novel mutations. Hear Res 2005;203:8893CrossRefGoogle ScholarPubMed
30Dahl, HH, Saunders, K, Kelly, TM, Osborn, AH, Wilcox, S, Cone-Wesson, B et al. Prevalence and nature of connexin 26 mutations in children with non-syndromic deafness. Med J Aust 2001;175:182–3CrossRefGoogle ScholarPubMed
31Liu, XZ, Xia, XJ, Ke, XM, Ouyang, XM, Du, LL, Liu, YH et al. The prevalence of connexin 26 (GJB2) mutations in the Chinese population. Hum Genet 2002;111:394–7CrossRefGoogle ScholarPubMed
32Tang, HY, Fang, P, Ward, PA, Schmitt, E, Darilek, S, Manolidis, S et al. DNA Sequence analysis of GJB2, encoding connexin 26: observations from a population of hearing impaired cases and variable carrier rates, complex genotypes, and ethnic stratification of alleles among controls. Am J Med Genet 2006;140A:2401–15CrossRefGoogle Scholar
33Ross, SA, Novak, Z, Kumbla, RA, Zhang, A, Fowler, KB, Boppana, S. GJB2 and GJB6 mutations in children with congenital cytomegalovirus infection. Pediatr Res 2007;61:687–91CrossRefGoogle ScholarPubMed