Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T12:32:08.389Z Has data issue: false hasContentIssue false

Stria vascularis and vestibular dark cells: characterisation of main structures responsible for inner-ear homeostasis, and their pathophysiological relations

Published online by Cambridge University Press:  23 June 2008

R R Ciuman*
Affiliation:
Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Tübingen, Germany
*
Address for correspondence: Dr R R Ciuman, Uranusbogen 15,45478 Mülheim, Germany. E-mail: ciuman.raphael@cityweb.de

Abstract

The regulation of inner-ear fluid homeostasis, with its parameters volume, concentration, osmolarity and pressure, is the basis for adequate response to stimulation. Many structures are involved in the complex process of inner-ear homeostasis. The stria vascularis and vestibular dark cells are the two main structures responsible for endolymph secretion, and possess many similarities. The characteristics of these structures are the basis for regulation of inner-ear homeostasis, while impaired function is related to various diseases. Their distinct morphology and function are described, and related to current knowledge of associated inner-ear diseases. Further research on the distinct function and regulation of these structures is necessary in order to develop future clinical interventions.

Type
Review Article
Copyright
Copyright © JLO (1984) Limited 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kimura, RS. Distribution, structure and function of dark cells in the vestibular labyrinth. Ann Otol Rhinol Laryngol 1969;78:295311Google ScholarPubMed
2Marcus, DC, Liu, J, Wangemann, P. Transepithelial voltage and resistance of vestibular dark cell epithelium from the gerbil ampulla. Hear Res 1992;73:101–8CrossRefGoogle Scholar
3Wangemann, P. Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hear Res 1995;90:149–57CrossRefGoogle ScholarPubMed
4Milhaud, PG, Nicolas, MT, Bartolami, S. Vestibular semicircular canal epithelium of the rat in culture on filter support: polarity and barrier properties. Pflugers Arch 1999;437:823–30CrossRefGoogle ScholarPubMed
5Nakai, Y, Hilding, D. Vestibular endolymph producing epithelium. Electron microscopic study of the development and histochemistry of the dark cells of the crista ampullaris. Acta Otolaryngol 1968;66:120–8CrossRefGoogle ScholarPubMed
6Beketova, TP, Sekenova, SM. Functional characteristics of light and dark cells. Biull Eksp Biol Med 1975;80:107–9Google ScholarPubMed
7Kawamata, S, Harada, Y, Tagashira, N. Electron-microscopic study of the vestibular dark cells in the crista ampullaris of the guinea pig. Acta Otolaryngol 1986;102:168–74CrossRefGoogle ScholarPubMed
8Meyer zum Gottesberge, AM. Imbalanced calcium homeostasis and endolymphatic hydrops. Acta Otolaryngol Suppl 1988;460:1827CrossRefGoogle ScholarPubMed
9Gratton, MA, Rao, VH, Meehan, DT, Askew, C, Cosgrove, D. Matrix metalloproteinase dysregulation in the stria vascularis of mice with Alport syndrome: implications for capillary basement membrane pathology. Am J Pathol 2005;166:1465–74CrossRefGoogle ScholarPubMed
10Hawkins, JE Jr.Microcirculation in the labyrinth. Arch Otorhinolaryngol 1976;212:241–51CrossRefGoogle ScholarPubMed
11Konishi, K, Yamane, H, Iguchi, H, Takayama, M, Nakagawa, T, Sunami, K et al. Local substances regulating cochlear blood flow. Acta Otolaryngol Suppl 1998;538:40–6Google ScholarPubMed
12Castaldo, A, Linthicum, FH Jr.Stria vascularis hearing loss. Otol Neurotol 2006;27:285–6CrossRefGoogle ScholarPubMed
13Schuknecht, HF. Pathology of the Ear, 2nd edn.Philadelphia: Lea & Febiger, 1993;416–24Google Scholar
14Johnsson, LG, Hawkins, JE Jr.Sensory and neural degeneration with aging, as seen in microdissection in the human inner ear. Ann Otol Rhinol Laryngol 1972;81:179–93CrossRefGoogle ScholarPubMed
15Nadol, JB Jr.Electron microscopic findings in presbyacusic degeneration of the basal turn of the cochlea. Otolaryngol Head Neck Surg 1979;87:818–36CrossRefGoogle Scholar
16Thomopoulos, GN, Spicer, SS, Gratton, MA, Schulte, BA. Age-related thickening of basement membrane in stria vascularis capillaries. Hear Res 1997;111:3141CrossRefGoogle ScholarPubMed
17Anniko, M, Thornell, LE, Ramaekers, FC. Cytokeratin diversity in epithelia of the human inner ear. Acta Otolaryngol 1989;198:385–96CrossRefGoogle Scholar
18Anniko, M, Arnold, W, Thornell, LE, Virtanen, I, Ramaekers, FC, Pfaltz, CR. Regional variations in the expression of cytokeratin proteins in the adult human cochlea. Eur Arch Otorhinolaryngol 1990;247:182–8CrossRefGoogle ScholarPubMed
19Anniko, M, Arnold, W, Stigbrand, T. Structural and functional significance of intermediate filament proteins in the human organ of Corti. Acta Otolaryngol Suppl 1992;493:1929Google ScholarPubMed
20Usami, S, Hozawa, J, Shinkawa, H. Immunocytochemical localization of intermediate filaments in the guinea pig vestibular periphery. Acta Otolaryngol 1991;506:713Google Scholar
21Ito, M, Spicer, SS, Schulte, BA. Histochemical detection of glycogen and glycoconjugates in the inner ear with modified concanavalin A-horseradish peroxidase procedures. J Histochem 1994;26:437–46CrossRefGoogle ScholarPubMed
22Spicer, SS, Smythe, N, Schulte, BA. Ultrastructure indicative of ion transport in tectal, Deiters, and tunnel cells: differences between gerbil and chinchilla basal and apical cochlea. Anat Rev A Discov Mol Cell Evol Biol 2003;271:342–59Google ScholarPubMed
23Fukazawa, K, Sakagami, M, Umemoto, M, Semda, T. Development of melanosomes and cytochemical observation of tyrosinase activity in the inner ear. ORL J Otorhinolaryngol Relat Spec 1994;56:247–52CrossRefGoogle ScholarPubMed
24Masuda, M, Usami, S, Yamazaki, K, Takumi, Y, Shinkawa, H, Kurashima, K et al. Connexin 26 distribution in gap junctions between melanocytes in the human vestibular dark cell area. Anat Rec 2001;262:137–463.0.CO;2-2>CrossRefGoogle ScholarPubMed
25Kitamura, K, Sakagami, M, Umemoto, M. Strial dysfunction in a melanocyte deficient mutant rat (Ws/Ws rat). Acta Otolaryngol 1994;114:177–81CrossRefGoogle Scholar
26Ikeda, K, Morizono, T. Electrochemical profiles for monovalent ions in the stria vascularis: cellular model for ion transport mechanisms. Hear Res 1989;39:279–86CrossRefGoogle ScholarPubMed
27Salt, AN, Melchiar, I, Thalmann, R. Mechanisms of endocochlear potential generation by stria vascularis. Laryngoscope 1987;97:984–91CrossRefGoogle ScholarPubMed
28Jahnke, K. Intercellular junctions in the guinea pig stria vascularis as shows by freeze-etching. [in German]. Anat Embryol (Berl) 1975;147:189201CrossRefGoogle ScholarPubMed
29Bagger-Sjoback, D, Engstrom, B, Steinholtz, L, Hillerdal, M. Freeze fracture of the human stria vascularis. Acta Otolaryngol 1987;103:6472CrossRefGoogle ScholarPubMed
30Kitajiri, SI, Furuse, M, Morita, K, Saishin-Kiuchi, Y, Kido, H, Ito, J et al. Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hear Res 2004;187:2534CrossRefGoogle ScholarPubMed
31Florian, P, Amsheh, S, Lessidrensky, M, Todt, I, Bloedow, A, Ernst, A et al. Claudins in the tight junctions of stria vascularis marginal cells. Biochem Biophys Res Commun 2003;304:510CrossRefGoogle ScholarPubMed
32Gow, A, Davies, C, Southwood, CM, Frolenkow, G, Chrustowski, M, Ng, L et al. Deafness in claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci 2004;24:7051–62CrossRefGoogle ScholarPubMed
33Kitajiri, S, Miyamoto, T, Mineharu, A, Sonoda, N, Furuse, K, Hata, M. Compartmentalization established by claudin-11 tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J Cell Sci 2004;117:5087–96CrossRefGoogle ScholarPubMed
34Wilcox, ER, Burton, QL, Naz, S, Riazuddin, S, Smith, TN, Ploplis, B. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 2001;104:165–72CrossRefGoogle ScholarPubMed
35Kikuchi, T, Adams, JC, Paul, DL, Kimura, RS. Gap junction systems in the rat vestibular labyrinth: immunohistochemical and ultrastructural analysis. Acta Otolaryngol 1994;114:520–8CrossRefGoogle ScholarPubMed
36Peters, TA, Monnens-Cor, LAH, Cremers-Jo, WRJ, Curfs, HAJ. Genetic disorders of transporters/channels in the inner ear and their relation to the kidney. Pediatr Nephrol 2004;5:99110Google Scholar
37Birkenhager, R, Zimmer, AJ, Maier, W, Schipper, J. Pseudodominants of two recessive connexin mutations in non-syndromic sensorineural hearing loss? Laryngorhinootologie 2006;85:191–6Google ScholarPubMed
38Forge, A, Becker, D, Casalotti, S, Edwards, J, Marziano, N, Nevill, G. Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessment of connexin composition in mammals. J Comp Neurol 2003;467:207–31CrossRefGoogle ScholarPubMed
39Suzuki, T, Takamatsu, T, Oyamada, M. Expression of gap junction protein connexin43 in the adult rat cochlea: comparison with connexin26. J Histochem Cytochem 2003;51:903–12CrossRefGoogle ScholarPubMed
40Yang, JJ, Liao, PJ, Su, CC, Li, SY. Expression patterns of connexin 29 (GJB1) in mouse and rat cochlea. Biochem Biophys Res Commun 2005;338:723–8CrossRefGoogle Scholar
41Sunose, H, Liu, J, Marcus, DC. CAMP increases K+ secretion via activation of apical IsK/KvLQT1 channels in strial marginal cells. Hear Res 1997;114:107–16CrossRefGoogle ScholarPubMed
42Doherty, JK, Linthicum, FH Jr.Spiral ligament and stria vascularis changes in cochlear otosclerosis: effect on hearing level. Otol Neurotol 2004;25:457–64CrossRefGoogle ScholarPubMed
43Hirose, K, Liberman, MC. Lateral wall histopathology and endocochlear potential in the noise damaged mouse cochlea. J Assoc Res Otolaryngol 2003;4:339–52CrossRefGoogle ScholarPubMed
44Gratton, MA, Smyth, BJ, Schulte, BA, Vincent, DA Jr.Na, K-ATPase activity decreases in the cochlear lateral wall of quiet-aged gerbils. Hear Res 1995;83:4350CrossRefGoogle ScholarPubMed
45Gratton, MA, Schmiedt, RA, Schulte, BA. Age-related decreases in endocochlear potential are associated with vascular abnormalities in the stria vascularis. Hear Res 1996;94:116–24CrossRefGoogle ScholarPubMed
46Neyroud, N, Tesson, F, Denjoy, I, Leibovici, M, Donger, C, Barhanin, J. A novel mutation in the potassium channel gene KVLQT1 causes Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 1997;15:186–9CrossRefGoogle ScholarPubMed
47Spicer, SS, Schulte, BA. Differentiation of inner ear fibrocytes according to their ion transport related activity. Hear Res 1991;56:5364CrossRefGoogle ScholarPubMed
48Spicer, SS, Schulte, BA. The fine structure of spiral ligament cells relates to iron return to the stria and varies with place-frequency. Hear Res 1996;100:80100CrossRefGoogle Scholar
49Takahashi, T, Kimura, RS. The ultrastructure of the spiral ligament in the rhesus monkey. Acta Otolaryngol 1970;69:4660CrossRefGoogle ScholarPubMed
50Crouch, JJ, Sakaguchi, N, Lytle, C, Schulte, BA. Immunohistochemical localization of the Na-K-Cl co-transporter (NKCC1) in the gerbil inner ear. J Histochem Cytochem 1997;45:773–8CrossRefGoogle ScholarPubMed
51Schulte, BA, Adams, JC. Distribution of immunoreactive Na + , K + -ATPase in gerbil cochlea. J Histochem Cytochem 1989;37:127–34CrossRefGoogle ScholarPubMed
52Wangemann, P, Liu, J, Shimozono, M, Schimanski, S, Scofield, MA. K+ secretion in the strial marginal cells is stimulated via β1-adrenergic receptors but not via β2-adrenergic or vasopressin receptors. J Membr Biol 2000;175:191202Google ScholarPubMed
53Wangemann, P, Liu, J, Shimozono, M. β1-adrenergic receptors but not β2-adrenergic or vasopressin receptors regulate K+ secretion in vestibular dark cells of the inner ear. J Membr Biol 1999;170:6777CrossRefGoogle ScholarPubMed
54Ishii, K, Zhai, WG, Akita, M. Effect of a beta-stimulant on the inner ear stria vascularis. Ann Otol Rhinol Laryngol 2000;109:628–33CrossRefGoogle ScholarPubMed
55Kanoh, N. Effects of epinephrine on ouabain-sensitive, K+-dependent p-nitrophenylphosphatase activity in strial marginal cells of guinea pigs. Ann Otol Rhinol Laryngol 1999;108:345–8CrossRefGoogle ScholarPubMed
56Schimanski, S, Scofield, MA, Wangemann, P. Functional β2-adrenergic receptors are present in non-strial tissues of the lateral wall in the gerbil cochlea. Audiol Neurootol 2001;6:124–36CrossRefGoogle Scholar
57Milhaud, PG, Pondugula, SR, Lee, JH, Herzog, M, Lehouelleur, J, Wangemann, P. Chloride secretion by semicircular canal duct epithelium is stimulated via beta 2-adrenergic receptors. Am J Physiol Cell Physiol 2002;283:C1752–60CrossRefGoogle ScholarPubMed
58Wangemann, P, Liu, J, Scherer, EQ, Herzog, M, Shimozono, M, Scofield, MA. Muscarinic receptors control K+ secretion in inner ear strial marginal cells. J Membr Biol 2001;182:171–81CrossRefGoogle ScholarPubMed
59Wangemann, P. Adrenergic and muscarinic control of cochlear endolymph production. Adv Otorhinolaryngol 2002;59:4250Google ScholarPubMed
60Sunose, H, Liu, J, Shen, Z, Marcus, DC. CAMP increases apical IsK channel current and K+ secretion in vestibular dark cells. J Membr Biol 1997;156:2535CrossRefGoogle Scholar
61Tu, TY, Chiu, JH, Shu, CH, Lien, CF. CAMP mediates transepithelial K+ and Na+ transport in a strial marginal cell line. Hear Res 1999;127:149–57CrossRefGoogle Scholar
62Koch, T, Zenner, HP. Adenylate cyclase and G-proteins as a signal transfer system in the guinea pig inner ear. Arch Otorhinolaryngol 1988;245:82–7CrossRefGoogle ScholarPubMed
63Kumagami, H, Beitz, E, Wild, K, Zenner, HP, Ruppersberg, JP, Schultz, JE. Expression pattern of adenylyl cyclase isoforms in the inner ear of the rat by RT-PCR and immunochemical localization of calcineurin in the organ of Corti. Hear Res 1999;132:6975CrossRefGoogle ScholarPubMed
64Lee, JH, Kim, J, Kim, SJ. Effect of vasopressin on marginal cells of neonatal rat cochlea in vitro. Acta Otolaryngol 2001;121:902–7CrossRefGoogle ScholarPubMed
65Lee, JH, Marcus, DC. Nongenomic effects of corticosteroids on ion transport by stria vascularis. Audiol Neurootol 2002;7:100–6CrossRefGoogle ScholarPubMed
66Embark, HM, Bohmer, C, Vallon, V, Luft, F, Lang, F. Regulation of KCNE1-dependent K+ current by the serum and glucocorticoid-inducible kinase(SGK) isoforms. Pflugers Arch 2003;445:601–6CrossRefGoogle ScholarPubMed
67Pondugula, SR, Sanneman, JD, Wangemann, P, Milhaud, PG, Marcus, DC. Glucocorticoids stimulate cation absorption by semicircular canal duct epithelium via epithelial sodium channel. Am J Physiol Renal Physiol 2004;286:F1127–35CrossRefGoogle ScholarPubMed
68Liu, J, Kozakura, K, Marcus, DC. Evidence for purinergic receptors in vestibular dark cell and strial marginal cell epithelia of the gerbil. Audit Neurosci 1995;1:331–40Google ScholarPubMed
69Munoz, DJ, Kendrick, IS, Rassam, M, Thorne, PR. Vesicular storage of adenosine triphosphate in the guinea-pig cochlear lateral wall and concentrations of ATP in the endolymph during sound and hypoxia. Acta Otolaryngol 2001;121:1015Google Scholar
70Marcus, DC, Sunose, H, Liu, J, Shen, Z, Scofield, MA. P2U purinergic receptor inhibits apical IsK/KvLQT1 channel via protein kinase C in vestibular dark cells. Am J Physiol 1997;273:C2022–9CrossRefGoogle ScholarPubMed
71Marcus, DC, Scofield, MA. Apical P2Y4 purinergic receptor controls K+ secretion by vestibular dark cell epithelium. Am J Physiol Cell Physiol 2001;281:C282–9CrossRefGoogle ScholarPubMed
72Marcus, DC, Liu, J, Lee, JH, Scherer, EQ, Scofield, MA, Wangemann, P. Apical membrane P2Y4 purinergic receptor controls K+ secretion by strial marginal cell epithelium. Cell Commun Signal 2005;3:13CrossRefGoogle ScholarPubMed
73Sage, CL, Marcus, DC. Immunolocalization of P2Y4 and P2Y2 purinergic receptors in strial marginal cells and vestibular dark cells. J Membr Biol 2002;185:103–15CrossRefGoogle ScholarPubMed
74Housley, GD, Jagger, DJ, Greenwood, D, Raybould, NP, Salih, SG, Jarlebark, LE et al. Purinergic regulation of sound transduction and auditory neurotransmission. Audiol Neurootol 2002;1:5561CrossRefGoogle Scholar
75Beitz, E, Kumagami, H, Krippeit-Drews, P, Ruppersberg, JP, Schultz, JE. Expression pattern of aquaporin water channels in the inner ear of the rat. The molecular basis for a water regulation system in the endolymphatic sac. Hear Res 1999;132:7684CrossRefGoogle ScholarPubMed
76Beitz, E, Zenner, HP, Schultz, JE. Aquaporin-mediated fluid regulation in the inner ear. Cell Mol Neurobiol 2003;23:315–29CrossRefGoogle ScholarPubMed
77Lowenheim, H, Hirt, B. Aquaporine. Discovery, function, and significance for otorhinolaryngology [in German]. HNO 2004;52:673–8Google ScholarPubMed
78Huang, D, Chen, P, Chen, S, Nagura, M, Lim, DJ, Lin, X. Expression patterns of aquaporins in the inner ear: evidence for concerted actions of multiple types of aquaporins to facilitate water transport in the cochlea. Hear Res 2002;165:8595CrossRefGoogle ScholarPubMed
79Sawada, S, Takeda, T, Kitano, H, Takeuchi, S, Kakigi, A, Azuma, H. Aquaporin-2 regulation by vasopressin in the rat inner ear. Neuroreport 2002;13:1127–9CrossRefGoogle ScholarPubMed
80Mhatre, AN, Jero, J, Chiappine, I, Bolasco, G, Barbara, M, Lalwani, AK. Aquaporin-2 expression in the mammalian cochlea and investigation of its role in Meniere's disease. Hear Res 2002;170:5969CrossRefGoogle ScholarPubMed
81Mhatre, AN, Steinbach, S, Hribar, K, Hogue, AT, Lalwani, AK. Identification of aquaporin 5 (AQP5) within the cochlea: cDNA cloning and in situ localization. Biochem Biophys Res Commun 1999;264:157–62CrossRefGoogle ScholarPubMed
82Kitano, H, Suzuki, M, Kitanishi, T, Yazawa, Y, Kitajima, K, Isono, T et al. Regulation of inner ear fluid in the rat by vasopressin. Neuroreport 1999;10:1205–7CrossRefGoogle ScholarPubMed
83Fukushima, M, Kitahara, T, Fuse, Y, Uno, Y, Doi, K, Kubo, T. Effects of intratympanic injection of steroids on changes in rat inner ear aquaporin expression. Acta Otolaryngol 2002;122:600–6CrossRefGoogle ScholarPubMed
84Fukushima, M, Kitahara, T, Fuse, Y. Changes in aquaporin expression in the inner ear of the rat after i.p. Injection of steroids. Acta Otolaryngol Suppl 2004;553:1318CrossRefGoogle Scholar
85Kitahara, T, Fukushima, M, Uno, Y, Mishiro, Y, Kubo, T. Up-regulation of cochlear aquaporin-3 mRNA after intra-endolymphatic sac application of dexamethasone. Neurol Res 2003;25:865–70CrossRefGoogle ScholarPubMed
86Chen, HX, Wang, JL, Liu, QC, Qiu, JH. Distribution and location of immunoreactive atrial natriuretic peptides in cochlear stria vascularis of guinea pig. Chin Med J 1994;107:53–6Google ScholarPubMed
87Suzuki, M, Kitanishi, T, Kitano, H, Yazawa, Y, Kitajima, K, Takeda, T et al. C-type natriuretic peptide-like immunoreactivity in the rat inner ear. Hear Res 2000;139:51–8Google ScholarPubMed
88Prazma, J. Electroanatomy of the lateral wall of the cochlea. Arch Otorhinolaryngol 1975;209:113CrossRefGoogle ScholarPubMed
89Botta, L, Valli, P, Zucca, G, Casella, C. Effects of changes in K+ in the perilymphatic fluid on the activity of vestibular receptors in the frog [in Italian]. Boll Soc Ital Biol Sper 1985;61:419–24Google Scholar
90Zenner, HP, Reuter, G, Zimmermann, U, Gitter, AH, Fermin, C, LePage, EL. Transitory endolymph leakage induced hearing loss and tinnitus: depolarization, biphasic shortening and loss of electromotility of outer hair cells. Eur Arch Otorhinolaryngol 1994;251:143–53CrossRefGoogle ScholarPubMed
91Nicolas, M, Dememes, D, Martin, A, Kupershmidt, S, Barhanin, J. KCNQ1/KCNE1 potassium channels in mammalian vestibular dark cells. Hear Res 2001;153:132–45CrossRefGoogle ScholarPubMed
92Wangemann, P, Shen, Z, Liu, J. K+-induced stimulation of K+ secretion involves activation of the IsK channel in vestibular dark cells. Hear Res 1996;100:201–10CrossRefGoogle ScholarPubMed
93Wangemann, P, Liu, J, Shen, Z, Shipley, A, Marcus, DC. Hypo-osmotic challenge stimulates trans-epithelial K+ secretion and activates apical IsK channel in vestibular dark cells. J Membr Biol 1995;147:263–73CrossRefGoogle Scholar
94Grunnet, M, Jespersen, T, Macaulay, N, Jorgensen, NK, Schmitt, N, Pongs, O et al. KCNQ1 channels sense small changes in cell volume. J Physiol 2003;549:419–27CrossRefGoogle ScholarPubMed
95Bleich, M, Warth, R. The very small-conductance K+ channel KvLQT1 and epithelial function. Pflugers Arch 2000;440:202–6Google ScholarPubMed
96Letts, VA, Valenzuela, A, Dunbar, C, Zheng, QY, Johnson, KR, Frankel, WN. A new spontaneous mouse mutation in the KCNE1 gene. Mamm Genome 2000;11:831–5CrossRefGoogle ScholarPubMed
97Vetter, DE, Mann, JR, Wangemann, P, Liu, J, McLaughlin, KJ, Lesage, F et al. Inner ear defects induced by null mutations of Isk gene. Neuron 1996;17:1251–64CrossRefGoogle Scholar
98Monnig, G, Schulze-Bahr, E, Wedekind, H, Eckardt, L, Kirchhof, P, Funke, H et al. Clinical aspects and molecular genetics of the Jervall- and Lange-Nielsen Syndrome [in German]. Z Kardiol 2002;91:380–8Google Scholar
99Tyson, J, Tranebjaerg, L, McEntagart, M, Larsen, LA, Christiansen, M, Whiteford, ML et al. Mutational spectrum in the cardioauditory syndrome of Jervell and Lange-Nielsen. Hum Genet 2000;107:499503CrossRefGoogle ScholarPubMed
100Mhatre, AN, Li, J, Chen, AF, Yost, CS, Smith, RJ, Kindler, CH. Genomic structure, cochlear expression, and mutation screening of KCNK6, a candidate gene for DFNA4. J Neurosci Res 2004;75:2531CrossRefGoogle ScholarPubMed
101Marcus, DC, Shen, Z. Slowly activating voltage-dependent K+ conductance is apical pathway for K+ secretion in vestibular dark cells. Am J Physiol 1994;267:C857–64Google Scholar
102Marcus, DC, Takeuchi, S, Wangemann, P. Ca2+-activated nonselective cation channel in apical membrane of vestibular dark cells. Am J Physiol 1992;262:C1423–9CrossRefGoogle Scholar
103Wangemann, P, Marcus, DC. The membrane potential of vestibular dark cells is controlled by a large Cl conductance. Hear Res 1992;62:149–56CrossRefGoogle ScholarPubMed
104Ando, M, Takeuchi, S. MRNA encoding ClC-K1, a kidney Cl(-)-channel is expressed in marginal cells of stria vascularis of rat cochlea: its possible contribution to Cl(-) currents. Neurosci Lett 2000;284:171–4CrossRefGoogle ScholarPubMed
105Oshima, T, Ikeda, K, Furukawa, M, Takasaka, T. Expression of voltage-dependent chloride channels in the rat cochlea. Hear Res 1997;103:63–8CrossRefGoogle ScholarPubMed
106Flagella, M, Clarke, LL, Miller, ML, Erway, LC, Giannella, RA, Andringa, A et al. Mice lacking the basolateral Na-K-2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J Biol Chem 1999;274:26946–55CrossRefGoogle ScholarPubMed
107Picollo, A, Liantonio, A, Didonna, MP, Elia, L, Camerino, DC, Pusch, M. Molecular determinants of differential pore blocking of kidney ClC-K chloride channels. Embo Rep 2004;5:584–9CrossRefGoogle ScholarPubMed
108Sage, CL, Marcus, DC. Immunolocalization of ClC-K chloride channel in the strial marginal cells and vestibular dark cells. Hear Res 2001;160:19CrossRefGoogle ScholarPubMed
109Schlingmann, KP, Konrad, M, Jeck, N. Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 2004;350:1314–19CrossRefGoogle ScholarPubMed
110Delpire, E, Lu, J, England, R, Dull, C, Thorne, T. Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet 1999;22:192–5CrossRefGoogle ScholarPubMed
111Wangemann, P, Marcus, DC. K+ induced swelling of vestibular dark cells is dependent on Na+ and Cl and inhibited by piretanide. Pfugers Arch 1990;416:262–9CrossRefGoogle ScholarPubMed
112Wangemann, P, Shiga, N. Cell volume control in vestibular dark cells during and after a hyposmotic challenge. Am J Physiol 1994;266:C1046–60CrossRefGoogle ScholarPubMed
113Ferrary, E, Bernard, C, Oudar, O, Sterkers, O, Amiel, C. Secretion of endolymph by the isolated frog semicircular canal. Acta Otolaryngol 1992;112:294–8CrossRefGoogle ScholarPubMed
114Iwasa, KH, Mizuta, K, Lim, DJ, Benos, DJ, Tachibana, M. Amiloride-sensitive channels in marginal cells in the stria vascularis of the guinea pig cochlea. Neurosci Lett 1994;172:163–6CrossRefGoogle ScholarPubMed
115Komune, S, Nakagawa, T, Hisashi, K, Kimituki, T, Uemura, T. Movement of monovalent ions across the membranes of marginal cells of the stria vascularis in the guinea pig cochlea. ORL J Otorhinolaryngol Relat Spec 1993;55:61–7CrossRefGoogle ScholarPubMed
116Zhong, SX, Liu, ZH. Immunohistochemical localization of the epithelial sodium channel in the rat inner ear. Hear Res 2004;193:18CrossRefGoogle ScholarPubMed
117Guipponi, M, Vuagniaux, G, Wattenhofer, M. The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro. Hum Mol Genet 2002;11:2829–36CrossRefGoogle ScholarPubMed
118Kuijpers, W, Bonting, SL. Studies on Na+-K+-activated ATPase: localization and properties of ATPase in the inner ear of the guinea pig. Biochim Biophys Acta 1969;173:477–85CrossRefGoogle ScholarPubMed
119Pitovski, DZ, Kerr, TP. Sodium- and potassium-activated ATPase in the mammalian vestibular system. Hear Res 2002;171:5165CrossRefGoogle ScholarPubMed
120Blanco, G, Mercer, RW. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 1998;275:F633–50Google ScholarPubMed
121Crambert, G, Hasler, U, Beggah, AT. Transport and pharmacological properties of nine different human Na-K-ATPase isozymes. J Biol Chem 2000;275:1976–86CrossRefGoogle ScholarPubMed
122Fina, M, Ryan, A. Expression of mRNAs encoding alpha and beta subunit isoforms of Na-K-ATPase in the vestibular labyrinth and endolymphatic sac of the rat. Mol Cell Neurosci 1994;5:604–13CrossRefGoogle ScholarPubMed
123TenCate, WJ, Curtis, LM, Rarey, KE. Na, K-ATPase subunit isoform expression in the guinea pig endolymphatic sac. ORL J Otorhinolaryngol Relat Spec 1995;56:257–62Google Scholar
124Shibata, T, Hibino, H, Doi, K, Suzuki, T, Hisa, Y, Kurachi, Y. Gastric type H + , K + -ATPase in the cochlear lateral wall is critically involved in formation of the endocochlear potential. Am J Physiol Cell Physiol 2006;291:C1038–48CrossRefGoogle ScholarPubMed
125Furuta, H, Mori, N, Sato, C, Hoshikawa, H, Sakai, S, Iwakura, S et al. Mineralocorticoid type 1 receptor in the rat cochlea: mRNA identification by polymerase chain reaction (PCR) and in situ hybridization. Hear Res 1994;78:175–80CrossRefGoogle Scholar
126Erichsen, S, Berger, S, Schmid, W, Stierna, P, Hultcrantz, M. Na, K-ATPase expression in the mouse is not dependent on the mineralocorticoid receptor. Hear Res 2001;160:3746CrossRefGoogle Scholar
127Zuo, J, Rarey, KE. Responsiveness of alpha 1 and beta 1 cochlear Na, K-ATPase isoforms to thyroid hormone. Acta Otolaryngol 1996;116:422–8CrossRefGoogle ScholarPubMed
128Ikeda, K, Kusakari, J, Takasaka, T, Saito, Y. Early effects of acetazolamide on anionic activities of the guinea pig endolymph: evidence for active function of carbonic anhydrase in the cochlea. Hear Res 1987;26:117–25CrossRefGoogle Scholar
129Sterkers, O, Saumon, G, TranBaHuy, P, Ferrary, E, Amiel, C. Electrochemical heterogeneity of the cochlear endolymph: effect of acetazolamide. Am J Physiol 1984;246:F4753Google ScholarPubMed
130Tanaka, F, Whitworth, CA, Rybak, LP. Round window pH manipulation alters the ototoxicity of systemic cisplatin. Hear Res 2004;187:4450CrossRefGoogle ScholarPubMed
131Misrahy, GA, Hildreth, KM, Clark, LC, Shinabarger, EW. Measurement of the pH of the endolymph in the cochlea of guinea pigs. Am J Physiol 1958;194:393–5CrossRefGoogle Scholar
132Sinha, PK, Pitovski, DZ. 3H-aldosterone binding sites (type1 receptors) in the lateral wall of the cochlea: distribution assessement by quantitative autoradiography. Acta Otolaryngol 1995;115:643–7CrossRefGoogle Scholar
133TranBaHuy, P, Lecain, E. Contribution to the study of endolymph homeostasis. Bull Acad Natl Med 2002;186:1269–86Google Scholar
134Stankovic, KM, Brown, D, Alper, SL, Adams, JC. Localization of pH regulating proteins H + ATPase and Cl-/HCO3- exchanger in the guinea pig inner ear. Hear Res 1997;114:2134CrossRefGoogle ScholarPubMed
135Stover, EH, Borthwick, KJ, Bavalia, C. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet 2002;39:796803CrossRefGoogle ScholarPubMed
136Bond, BR, Ng, LL, Schulte, BA. Identification of mRNA transcripts and immunohistochemical localization of Na/H exchanger isoforms in gerbil inner ear. Hear Res 1998;123:19CrossRefGoogle ScholarPubMed
137Ikeda, K, Sunose, H, Takasaka, T. Involvement of Na + -H+ exchange in intracellular pH recovery from acid load in the stria vascularis of the guinea-pig cochlea. Acta Otolaryngol 1994;114:162–6CrossRefGoogle Scholar
138Wangemann, P, Liu, J, Shiga, N. Vestibular dark cells contain the Na + /H+ exchanger NHE-1 in the basolateral membrane. Hear Res 1996;94:94106CrossRefGoogle ScholarPubMed
139Yoshihara, T, Satoh, M, Yamamura, Y, Itoh, H, Ishii, T. Ultrastructural localization of glucose transporter 1 (GLUT1) in guinea pig stria vascularis and vestibular dark cell areas: an immunogold study. Acta Otolaryngol 1999;119:336–40Google ScholarPubMed
140Ito, M, Spicer, SS, Schulte, BA. Immunohistochemical localization of brain type glucose transporter in mammalian inner ears: comparison of developmental and adult stages. Hear Res 1993;71:230–8CrossRefGoogle ScholarPubMed
141Okamura, H, Spicer, SS, Schulte, BA. Developmental expression of monocarboxylate transporter in the gerbil inner ear. Neuroscience 2001;107:499505CrossRefGoogle ScholarPubMed
142Souter, M, Forge, A. Intercellular junctional maturation in the stria vacularis: possible association with onset and rise of endocochlear potential. Hear Res 1998;119:8195CrossRefGoogle Scholar
143Hibino, H, Higashi-Shingai, K, Fujita, A, Iwai, K, Ishii, M, Kurachi, Y. Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential. Eur J Neurosci 2004;19:7684CrossRefGoogle ScholarPubMed
144Takeuchi, S, Ando, M. Inwardly rectifying K+ currents in intermediate cells in the cochlea of gerbils: a possible contribution to the endocohlear potential. Neurosci Lett 1998;247:175–8CrossRefGoogle Scholar
145Marcus, DC, Rokugo, M, Thalmann, R. Effects of barium and ion substitutions in artificial blood on endocochlear potential. Hear Res 1985;17:7986CrossRefGoogle ScholarPubMed
146Takeuchi, S, Ando, M, Kakigi, A. Mechanism generating endocochlear potential. Role played by intermediate cells in stria vascularis. Biophys J 2000;79:2572–82CrossRefGoogle ScholarPubMed
147Marcus, DC, Wu, T, Wangemann, P, Kofuji, P. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 2002;282:C403–7CrossRefGoogle ScholarPubMed
148Fujimara, T, Furukawa, H, Doi, Y, Fujimoto, S. The significance of endothelin for generation of endocochlear potential. J Cardiovasc Pharmacol 1998;31(suppl 1):376–7CrossRefGoogle Scholar
149Everett, LA, Glaser, B, Beck, JC, Idol, JR, Buchs, A, Heyman, M et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 1997;17:411–22CrossRefGoogle Scholar
150Everett, LA, Morsli, H, Wu, DK, Green, ED. Expression pattern of the mouse ortholog of the Pendred's syndrome gene (Pds) suggests a key role for pendrin in the inner ear. Proc Natl Acad Sci USA 1999;96:9727–32CrossRefGoogle ScholarPubMed
151Royaux, IE, Belyantseva, IA, Wu, T, Kachar, B, Everett, LA, Marcus, DC et al. Localization and functional studies of pendrin in the mouse inner ear provide insight about the etiology of deafness in pendred syndrome. J Assoc Res Otolaryngol 2003;4:394404CrossRefGoogle ScholarPubMed
152Wangemann, P, Itza, EM, Albrecht, B, Wu, T, Jabba, SV, Maganti, RJ et al. Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Med 2004;2:30CrossRefGoogle ScholarPubMed
153Wangemann, P, Jabba, SV, Singh, R. Deafness in Pendred Syndrome is related to free radical stress in the stria vascularis. In: David, Lim, ed. Fifth International Symposium on Meniere's disease. Meniere's Disease and Inner Ear Homeostasis Disorders. Los Angeles: House Ear Institute Publications, 2005;3641Google Scholar
154Spicer, SS, Schulte, BA. Novel structures in marginal and intermediate cells presumably relate to functions of apical versus basal strial strata. Hear Res 2005;205:225–40CrossRefGoogle Scholar
155Wangemann, P. K+ cycling and its regulation in the cochlea and the vestibular labyrinth. Audiol Neurootol 2002;7:199205CrossRefGoogle ScholarPubMed
156Wangemann, P. K+ cycling and the endocochlear potential. Hear Res 2002;165:19CrossRefGoogle ScholarPubMed
157Helling, K, Merker, HJ. Morphological aspects of potassium flow in the semicircular canal of the pigeon. Histol Histopathol 2005;20:339–50Google ScholarPubMed
158Chiba, T, Marcus, DC. Nonselective cation and BK channels in apical membrane of outer sulcus epithelial cells. J Membr Biol 2000;174:167–79CrossRefGoogle ScholarPubMed
159Marcus, CB, Chiba, T. K+ and Na+ absorption by outer sulcus epithelial cells. Hear Res 1999;134:4856CrossRefGoogle ScholarPubMed
160Zidanic, M, Brownell, WE. Fine structure of the intracochlear poential field. 1. The silent current. Biophys J 1990;57:1253–68CrossRefGoogle Scholar
161Lee, JH, Chiba, T, Marcus, DC. P2X2 receptor mediates stimulation of parasensory cation absorption by cochlear outer sulcus cells and vestibular transitional cells. J Neurosci 2001;21:9168–74CrossRefGoogle ScholarPubMed
162Holt, JR, Corey, DP. Two mechanisms for transducer adaptation in vertebrate hair cells. Proc Natl Acad Sci USA 2000;97:11730–5CrossRefGoogle ScholarPubMed
163Ricci, AJ, Fettiplace, R. Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J Physiol 1998;506:159–73CrossRefGoogle Scholar
164Brookes, GB. Vitamin D deficiency – a new cause of cochlear deafness. J Laryngol Otol 1983;97:405–20CrossRefGoogle ScholarPubMed
165Ikeda, K, Kobayashi, T, Kusakari, J, Takasaka, T, Yumita, S, Furukawa, Y. Sensorineural hearing loss associated with hypoparathyroidism. Laryngoscope 1987;97:1075–9CrossRefGoogle ScholarPubMed
166Yamashita, H, Bagger-Sjoback, D. Calmodulin binding sites in the endolymphatic sac and stria vascularis of the human fetus and the guinea pig. ORL J Otorhinolaryngol Relat Spec 1992;54:117–20CrossRefGoogle ScholarPubMed
167Ogata, Y, Slepecky, NB. Immunocytochemical localization of calmodulin in the vestibular end-organs of the gerbil. J Vestib Res 1998;8:209–16CrossRefGoogle ScholarPubMed
168Ikeda, K, Morizono, T. Electrochemical profile for calcium ions in the stria vascularis: model of calcium transport mechanism. Hear Res 1989;40:111–16CrossRefGoogle ScholarPubMed
169Yoshihara, T, Igarashi, M, Usami, S, Kanda, T. Cytochemical studies of Ca + +-ATPase activity in the vestibular epithelia of the guinea pig. Arch Otorhinolaryngol 1987;243:417–23CrossRefGoogle ScholarPubMed
170Wood, JD, Muchinsky, SJ, Filoteo, AG, Penniston, JT, Tempel, BL. Low endolymph calcium concentrations in deafwaddler 2J mice suggest that PMCA2 contributes to endolymph calcium maintenance. J Assoc Res Otolaryngol 2004;5:99110CrossRefGoogle Scholar
171Yamauchi, D, Raveendran, NN, Pondugula, SR, Kampalli, SB, Sannemann, JD, Harbidge, DG et al. Vitamin D upregulates expression of EcaC1 mRNA in semicircular canal. Biochem Biophys Res Commun 2005;331:1353–7CrossRefGoogle ScholarPubMed
172Imon, K, Amano, T, Ishihara, K, Sasa, M, Yajin, K. Existence of voltage-dependent Ca2+ channels in vestibular dark cells: cytochemical and whole-cell patch-clamp studies. Eur Arch Otorhinolaryngol 1997;254:287–91CrossRefGoogle ScholarPubMed
173Mori, Y, Amano, T, Sasa, M, Yajin, K. Cytochemical and patch-clamp studies of calcium influx through voltage-dependent Ca2+ channels in vestibular supporting cells of guinea pigs. Eur Arch Otorhinolaryngol 1998;255:235–9CrossRefGoogle ScholarPubMed
174Harada, Y, Takumida, M. Functional aspects of the vestibular dark cells in the guinea pig: morphological investigation using ruthenium red staining technique. Auris Nasus Larynx 1990;17:7785CrossRefGoogle ScholarPubMed