Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T22:18:22.095Z Has data issue: false hasContentIssue false

Vitamin D, innate immunity and upper respiratory tract infection

Published online by Cambridge University Press:  13 January 2010

J Bartley*
Affiliation:
Department of Otolaryngology-Head and Neck Surgery, Counties-Manukau District Health Board, Auckland, New Zealand
*
Address for correspondence: Dr Jim Bartley, 10 Owens Rd, Epsom, Auckland 1023, New Zealand. Fax: 649 631 0478 E-mail: jbartley@ihug.co.nz

Abstract

Introduction:

At the turn of the twentieth century, ultraviolet light was successfully used to treat tuberculosis of the skin. Upper respiratory tract infections had been inversely associated with sun exposure. During the last decade, basic scientific research demonstrated that vitamin D has an important anti-infective role.

Method:

Review of the relevant literature on the influence of vitamin D on innate immunity and respiratory tract infection.

Results:

Vitamin D is involved in the production of defensins and cathelicidin – antimicrobial peptides that provide a natural defence against potential microbiological pathogens. Vitamin D supplementation increases cathelicidin production. Low vitamin D levels are associated with an increased incidence of upper respiratory tract infections.

Conclusions:

Vitamin D appears to play an important role in the regulation of innate immunity in the upper respiratory tract. Optimal vitamin D levels and appropriate dosing schedules have yet to be determined.

Type
Review Articles
Copyright
Copyright © JLO (1984) Limited 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kime, ZR. Sunlight and infectious disease. In: Sunlight. Penryn: World Health Publications, 1980;157–89Google Scholar
2Adams, JS, Hewison, M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat Clin Pract Endocrinol Metab 2008;4:8090CrossRefGoogle ScholarPubMed
3Wang, TT, Nestel, FP, Bourdeau, V, Nagai, Y, Wang, Q, Liao, J et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 2004;173:2909–12CrossRefGoogle ScholarPubMed
4Gombart, AF, Borregaard, N, Koeffler, HP. Human cathelicidin antimicrobial peptide (CAMP) is a direct target of the vitamin D receptor and is strongly upregulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 2005;19:1067–77CrossRefGoogle ScholarPubMed
5Liu, PT, Stenger, S, Li, H, Tang, DH, Modlin, RL. Toll-like receptor triggering of a vitamin D mediated human antimicrobial response. Science 2006;311:1770–3CrossRefGoogle ScholarPubMed
6Liu, PT, Stenger, S, Tang, DH, Modlin, RL. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 2007;179:2060–3CrossRefGoogle ScholarPubMed
7Adams, JS, Ren, S, Liu, PT, Chun, RF, Lagishetty, V, Gombart, AF et al. Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. J Immunol 2009;182:4289–95CrossRefGoogle ScholarPubMed
8Ginde, A, Mansbach, JM, Camargo, CA. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the third National Health and Nutrition Examination survey. Arch Int Med 2009;169:384–90CrossRefGoogle ScholarPubMed
9Medzhitov, R, Janeway, C Jr.Innate immunity. N Engl J Med 2000;343:338–44CrossRefGoogle ScholarPubMed
10Ooi, EH, Wormald, PJ, Tan, LW. Innate immunity in the paranasal sinuses: a review of host defences. Am J Rhinol 2008;22:1319CrossRefGoogle Scholar
11Boucher, RC. Molecular insights into the physiology of the “thin film” of airway liquid. J Physiol 1999;516:631–8CrossRefGoogle Scholar
12Diamond, G, Legarda, D, Ryan, LK. The innate immune response of the respiratory epithelium. Immunol Rev 2000;173:2738CrossRefGoogle ScholarPubMed
13Medzhitov, R, Janeway, C Jr.Innate immune recognition: mechanisms and pathways. Immunol Rev 2000;173:8997CrossRefGoogle ScholarPubMed
14Ganz, T. Antimicrobial, polypeptides. J Leukoc Biol 2004;75:34–8CrossRefGoogle Scholar
15Brogden, KA. Antimicrobial peptides: pore inhibitors or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005;3:238–50CrossRefGoogle ScholarPubMed
16Gudmundsson, GH, Agerberth, B. Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J Immunol Methods 1999;232:4554CrossRefGoogle ScholarPubMed
17Van Wetering, S, Tjabringa, GS, Hiemstra, PS. Interactions between neutrophil-derived antimicrobial peptides and airway epithelial cells. J Leukoc Biol 2005;77:444–50CrossRefGoogle ScholarPubMed
18Cunliffe, RN, Mahida, YR. Expression and regulation of antimicrobial peptides in the gastrointestinal tract. J Leukoc Biol 2004;75:4958CrossRefGoogle ScholarPubMed
19Frye, M, Bargon, J, Dauletbaev, N, Weber, A, Wagner, TO, Gropp, R. Expression of human α-defensin 5 (HD5) mRNA in nasal and bronchial epithelial cells. J Clin Pathol 2000;53:770–3CrossRefGoogle ScholarPubMed
20Lee, SH, Kim, JE, Lim, HH, Lee, HM, Choi, JO. Antimicrobial defensin peptides of the human nasal mucosa. Ann Otol Rhinol Laryngol 2002;111:135–41CrossRefGoogle ScholarPubMed
21Zhao, R, Wang, I, Lehrer, RI. Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 1996;396:319–22CrossRefGoogle ScholarPubMed
22Harder, J, Bartels, H, Christophers, E, Schroder, JM. Isolation and characterisation of human beta defensin 3 a novel human inducible peptide antibiotic. J Biol Chem 2001;276:5707–13CrossRefGoogle ScholarPubMed
23Garcia, J-R, Krause, A, Schulz, S, Rodríguez-Jiménez, FJ, Klüver, E, Adermann, K et al. Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity FASEB J 2001;15:1819–21CrossRefGoogle ScholarPubMed
24Carothers, DG, Graham, SM, Jia, HP, Ackermann, MR, Tack, BF, McCray, PB Jr.Production of β-defensin antimicrobial peptides by maxillary sinus mucosa. Am J Rhinol 2001;15:175–9CrossRefGoogle ScholarPubMed
25Zanetti, M, Gennaro, R, Romeo, D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 1995;374:15CrossRefGoogle Scholar
26Yamasaki, K, Schauber, J, Coda, J, Lin, H, Dorschner, RA, Schechter, NM et al. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 2006;20:2068–80CrossRefGoogle ScholarPubMed
27Bals, R, Wang, X, Zasloff, M, Wilson, JM. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A 1998;95:9541–6CrossRefGoogle ScholarPubMed
28Kim, ST, Cha, HE, Kim, DY, Han, GC, Chung, YS, Lee, YJ et al. Antimicrobial peptide LL-37 is upregulated in chronic nasal inflammatory disease. Acta Otolaryngol 2003;123:81–5CrossRefGoogle ScholarPubMed
29Ooi, EH, Wormald, PJ, Carney, AS, James, CL, Tan, LW. Human cathelicidin peptide is up-regulated in the eosinophil mucus subgroup of chronic rhinosinusitis patients. Am J Rhinol 2007;21:395401CrossRefGoogle ScholarPubMed
30Yim, S, Dhawan, P, Ragunath, C, Christakos, S, Diamond, G. Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D3. J Cyst Fibros 2007;6:403–10CrossRefGoogle Scholar
31Weber, G, Heilborn, JD, Chamorro Jimenez, CI, Hammarsjo, A, Törmä, H, Stahle, M. Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Invest Dermatol 2005;124:1080–2CrossRefGoogle ScholarPubMed
32Palmer, J. Bacterial biofilms in chronic rhinosinusitis. Ann Otol Rhinol Laryngol Suppl 2006;196:35–9CrossRefGoogle ScholarPubMed
33Macassey, E, Dawes, P. Biofilms and their role in otorhinolaryngological disease. J Laryngol Otol 2008;122:1273–8CrossRefGoogle ScholarPubMed
34Hunsaker, DH, Leid, JG. The relationship of biofilms to chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg 2008;16:237–41CrossRefGoogle ScholarPubMed
35Costerton, JW, Stewart, PS, Greenberg, EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284:1318–22CrossRefGoogle ScholarPubMed
36Dunne, WM. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 2002;15:155–66CrossRefGoogle ScholarPubMed
37Taggart, CC, Greene, CM, Smith, SG, Levine, RL, McCray, PB, O'Neill, S et al. Inactivation of human beta-defensins 2 and 3 by elastolytic cathepsins. J Immunol 2003;171:931–7CrossRefGoogle ScholarPubMed
38Schmidtchen, A, Frick, IM, Andersson, E, Tapper, H, Björck, L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 2002;46:157–68CrossRefGoogle ScholarPubMed
39Larrick, JW, Hirata, M, Balint, RF, Lee, J, Zhong, J, Wright, SC. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 1995;63:1291–7CrossRefGoogle ScholarPubMed
40Rosenfeld, Y, Shai, Y. Lipopolysaccaride (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta 2006;1758:1513–22CrossRefGoogle Scholar
41Jayaraman, A, Wood, TK. Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng 2008;10:145–67CrossRefGoogle ScholarPubMed
42Overhage, J, Campisano, A, Bains, B, Torfs, EC, Rehn, BH, Hancock, RE. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 2008;76:4176–82CrossRefGoogle ScholarPubMed
43Chennupati, SK, Liu, AG, Tamashiro, E, Banks, CA, Cohen, MB, Bleier, BS et al. Effects of an LL-37-derived antimicrobial peptide in an animal model of biofilm Pseudomonas sinusitis. Am J Rhinol Allergy 2009;23:4651CrossRefGoogle Scholar
44Smiley, DF. Seasonal factors in the incidence of acute respiratory infections. Am J Hygiene 1936;5:359–61Google Scholar
45Mariam, TW, Sterky, G. Severe rickets in infancy and childhood in Ethiopia. J Pediatr 1973;82:876–8CrossRefGoogle ScholarPubMed
46El-Radhi, AS, Majeed, M, Mansor, N, Ibrahim, M. High incidence of rickets in children with wheezy bronchitis in a developing country. J R Soc Med 1982;75:884–7CrossRefGoogle ScholarPubMed
47Muhe, L, Lulseged, S, Mason, KE, Simoes, EA. Case-control study of the role of nutritional rickets in the risk of developing pneumonia in Ethiopian children. Lancet 1997;349:1801–4CrossRefGoogle ScholarPubMed
48Banajeh, SM, al-Sunbali, NN, al-Sanahani, SH. Clinical characteristics and outcome of children aged under 5 years hospitalized with severe pneumonia in Yemen. Ann Trop Paediatr 1997;17:321–6CrossRefGoogle ScholarPubMed
49Najada, AS, Habashneh, MS, Khader, M. The frequency of nutritional rickets among hospitalized infants and its relation to respiratory diseases. J Trop Pediatr 2004;50:364–8CrossRefGoogle ScholarPubMed
50Laaksi, I, Ruohola, JP, Tuohimaa, P, Auvinen, A, Haataja, R, Pihlajamäki, H et al. An association of serum vitamin D concentrations <40 nmol/l with acute respiratory tract infection in young Finnish men. Am J Clin Nutr 2007;86:714–17CrossRefGoogle ScholarPubMed
51Wayse, V, Yousafzai, A, Mogale, K, Filteau, S. Association of subclinical vitamin D deficiency with severe acute lower respiratory infection in Indian children under 5 years. Eur J Clin Nutr 2004;58:563–7CrossRefGoogle Scholar
52Karatekin, G, Kaya, A, Salihoglu, O, Balci, H, Nuhoglu, A. Association of subclinical vitamin D deficiency in newborns with acute lower respiratory infection and their mothers. Eur J Clin Nutr 2009;63:473–7CrossRefGoogle ScholarPubMed
53Temorschuizen, F, Wijga, A, Gerritsen, J, Neijens, HJ, van Loveren, H. Exposure to solar ultraviolet radiation and respiratory tract symptoms in 1-year-old children. Photodermatol Photoimmunol Photomed 2004;20:270–1CrossRefGoogle Scholar
54Cannell, JJ, Zasloff, M, Garland, CF, Scragg, R, Giovannucci, E. On the epidemiology of influenza. Virol J 2008;5:29CrossRefGoogle ScholarPubMed
55Bartley, J, Reid, DR, Morton, RP. Prevalence of vitamin D deficiency among patients attending a general otolaryngology clinic in South Auckland. Ann Otol Rhinol Laryngol 2009;118:326–8CrossRefGoogle ScholarPubMed
56Linday, LA, Shindledecker, RD, Dolitsky, JN, Chen, TC, Holick, MF. Plasma 25-hydroxyvitamin D levels in children undergoing placement of tympanostomy tubes. Ann Otol Rhinol Laryngol 2008;117:740–4CrossRefGoogle ScholarPubMed
57Holmes, AD, Pigott, MG. Vitamins aid reduction of lost time in industry. J Indust Eng Chem 1932;24:1058–60CrossRefGoogle Scholar
58Holmes, AD, Pigott, MG, Sawyer, WA, Comstock, L. Cod liver oil – a five year study of its value for reducing industrial absenteeism caused by colds and respiratory diseases. Indust Med 1936;5:359–61Google Scholar
59Gigineishvili, GR, Il'in, NI, Suzdal'nitskii, RS, Levando, VA. The use of UV irradiation to correct the immune system and decrease morbidity in athletes [in Russian]. Vopr Kurortol Fizioter Lech Fiz Kult 1990;May–Jun:30–3, cited by Cannell JJ, Vieth R, Willett W, Zasloff M, Hathcock JN, White JH et al. Cod liver oil, vitamin A toxicity, frequent respiratory tract infections and the vitamin D epidemic. Ann Otol Rhinol Laryngol 2008;117:864–70Google ScholarPubMed
60Rehman, PK. Sub-clinical rickets and recurrent infection. J Trop Pediatr 1994;40:58Google ScholarPubMed
61Linday, LA, Shindledecker, RD, Tapia-Mendoza, J, Dolitsky, JN. Effect of daily cod liver oil and a multivitamin-mineral supplement with selenium on upper respiratory tract pediatric visits by young, inner-city, Latino children: randomized pediatric sites. Ann Otol Rhinol Laryngol 2004;113:891901CrossRefGoogle Scholar
62Aloia, JF, Li-Ng, M. Re: epidemic influenza and vitamin D. Epidemiol Infect 2007;135:1095–6, 1097–8CrossRefGoogle ScholarPubMed
63Avenell, A, Cook, JA, MacLennan, GS, MacPherson, GC. Vitamin D supplementation to prevent infections: a sub-study of a randomised placebo-controlled trial in older people. Age Ageing 2007;36:574–7CrossRefGoogle ScholarPubMed