Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:54:32.961Z Has data issue: false hasContentIssue false

Antonio Pareja-Lora, María Blume, Barbara C. Lust & Christian Chiarcos (eds.), Development of linguistic linked open data resources for collaborative data-intensive research in the language sciences. Cambridge: The MIT Press, 2019. Pp. xxi + 247.

Review products

Antonio Pareja-Lora, María Blume, Barbara C. Lust & Christian Chiarcos (eds.), Development of linguistic linked open data resources for collaborative data-intensive research in the language sciences. Cambridge: The MIT Press, 2019. Pp. xxi + 247.

Published online by Cambridge University Press:  07 June 2021

FRANCES GILLIS-WEBBER*
Affiliation:
Department of Computer Science, University of Cape Town, Cape Town, 7700, South Africafran@fynbosch.com

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Reviews
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

[1]

This work was financially supported by Hasso Plattner Institute for Digital Engineering through the HPI Research School at University of Cape Town.

References

Berners-Lee, Tim. 2006. Linked Data. https://www.w3.org/DesignIssues/LinkedData.html (accessed 10 March 2021).Google Scholar
Berners-Lee, Tim, Hendler, James & Lassila, Ora. 2001. The Semantic Web. Scientific American 284, 3443.CrossRefGoogle Scholar
Chiarcos, Christian. n.d. Teach yourself LLOD. http://acoli.informatik.uni-frankfurt.de/resources/llod/ (accessed 10 March 2021).Google Scholar
Chiarcos, Christian, Fäth, Christian & Abromeit, Frank. 2020. Annotation interoperability for the post-ISOCat era. Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), 56685677.Google Scholar
Chiarcos, Christian & Sukhareva, Maria. 2015. OLiA — Ontologies of Linguistic Annotation. Semantic Web 6, 379386. doi:10.3233/SW-140167.CrossRefGoogle Scholar
Cimiano, Philipp, Chiarcos, Christian, McCrae, John P. & Gracia, Jorge. 2020. Linguistic Linked Data: Representation, generation and applications. Cham: Springer. doi:10.1007/978-3-030-30225-2.CrossRefGoogle Scholar
Gillis-Webber, Frances & Tittel, Sabine. 2019. The shortcomings of language tags for Linked Data when modelling lesser-known languages. Proceedings of the 2nd Conference on Language, Data and Knowledge (LDK 2019), 4:14:15. Leipzig, Germany.Google Scholar
Gillis-Webber, Frances, Tittel, Sabine & Keet, C. Maria. 2019. A model for language annotations on the Web. In Villazón-Terrazas, Boris & Hidalgo-Delgado, Yusniel (eds.), Knowledge graphs and Semantic Web, 116. Cham: Springer.Google Scholar
Hammarström, Harald, Forkel, Robert, Haspelmath, Martin & Sebastian Bank. 2020. Glottolog 4.3. https://glottolog.org/glottolog/glottologinformation (accessed 13 March 2021).Google Scholar
RDF Working Group. 2014a. RDF 1.1 Primer: W3C Working Group Note 24 June 2014. https://www.w3.org/TR/rdf11-primer/ (accessed 10 March 2021).Google Scholar
RDF Working Group. 2014b. Resource Description Framework (RDF). https://www.w3.org/RDF/ (accessed 10 March 2021).Google Scholar