Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T04:20:45.041Z Has data issue: false hasContentIssue false

3D morphological evolution of porous titanium by x-ray micro- and nano-tomography

Published online by Cambridge University Press:  14 June 2013

Yu-chen Karen Chen-Wiegart
Affiliation:
Photon Science Directorate, Brookhaven National Laboratory, Upton, New York 11973
Takeshi Wada
Affiliation:
Institute for Materials Research, Tohoku University, Katahira, Sendai, Japan 980-8577
Nikita Butakov
Affiliation:
Photon Science Directorate, Brookhaven National Laboratory, Upton, New York 11973; andDepartment of Electrical Engineering, University at Buffalo, Buffalo, New York 14261
Xianghui Xiao
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
Francesco De Carlo
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
Hidemi Kato
Affiliation:
Institute for Materials Research, Tohoku University, Katahira, Sendai, Japan 980-8577
Jun Wang*
Affiliation:
Photon Science Directorate, Brookhaven National Laboratory, Upton, New York 11973
David C. Dunand
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
Eric Maire
Affiliation:
MATEIS Laboratory, Institut National des Sciences Appliquées, Lyon, France 69621
*
a)Address all correspondence to this author. e-mail: junwang@bnl.gov
Get access

Abstract

The 3D morphological evolution of titanium foams as they undergo a two-step fabrication process is quantitatively characterized through x-ray micro- and nano-tomography. In the first process step, a Cu–Ti–Cr–Zr prealloy is immersed in liquid Mg, where Cu is alloyed with Mg while a skeleton of crystalline Ti–Cr–Zr is created. In the second step, the Mg–Cu phase is etched in acid, leaving a Ti–Cr–Zr foam with submicron struts. 3D images of these solidified Ti–Cr–Zr/Mg–Cu composites and leached Ti–Cr–Zr foams are acquired after 5, 10, and 30 min exposure to liquid Mg. As the Mg exposure time increases, the Ti–Cr–Zr ligaments grow in size. The tortuosity loosely follows the Bruggeman relation. The interfacial surface distribution of these Ti-foams is qualitatively similar to other nano-porous metal prepared by one-step dealloying. The characteristic length of the Mg–Cu phase and pores are also reported.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cox, M.E. and Dunand, D.C.: Bulk gold with hierarchical macro-, micro- and nano-porosity. Mater. Sci. Eng., A 528(6), 2401 (2011).CrossRefGoogle Scholar
Erlebacher, J. and Seshadri, R.: Hard materials with tunable porosity. MRS Bull. 34, 6 (2009).CrossRefGoogle Scholar
Cheng, I. and Hodge, A.: Morphology, oxidation, and mechanical behavior of nanoporous Cu foams. Adv. Eng. Mater. 14(4), 219226 (2011).CrossRefGoogle Scholar
Gu, X.H., Xu, L.Q., Tian, F., and Ding, Y.: Au-Ag alloy nanoporous nanotubes. Nano Res. 2(5), 386 (2009).CrossRefGoogle Scholar
Dixon, M.C., Daniel, T.A., Hieda, M., Smilgies, D.M., Chan, M.H.W., and Allara, D.L.: Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 23(5), 2414 (2007).CrossRefGoogle ScholarPubMed
Qian, L.H., Shen, W., Shen, B., Qin, G.W.W., and Das, B.: Nanoporous gold-alumina core-shell films with tunable optical properties. Nanotechnology 21(30), 7 (2010).CrossRefGoogle ScholarPubMed
Wada, T., Yubuta, K., Inoue, A., and Kato, H.: Dealloying by metallic melt. Mater. Lett. 65(7), 1076 (2011).CrossRefGoogle Scholar
Li, H.Q., Misra, A., Baldwin, J.K., and Picraux, S.T.: Synthesis and characterization of nanoporous Pt-Ni alloys. Appl. Phys. Lett. 95(20), 201902 (2009).Google Scholar
Kafi, A.K.M., Ahmadalinezhad, A., Wang, J.P., Thomas, D.F., and Chen, A.C.: Direct growth of nanoporous Au and its application in electrochemical biosensing. Biosens. Bioelectron. 25(11), 2458 (2010).CrossRefGoogle ScholarPubMed
Ding, D.Y. and Chen, Z.: A pyrolytic, carbon-stabilized, nanoporous Pd film for wide-range H-2 sensing. Adv. Mater. 19(15), 1996 (2007).CrossRefGoogle Scholar
Biener, J., Wittstock, A., Zepeda-Ruiz, L.A., Biener, M.M., Zielasek, V., Kramer, D., Viswanath, R.N., Weissmuller, J., Baumer, M., and Hamza, A.V.: Surface-chemistry-driven actuation in nanoporous gold. Nat. Mater. 8(1), 47 (2009).CrossRefGoogle ScholarPubMed
Lang, X.Y., Hirata, A., Fujita, T., and Chen, M.W.: Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6(4), 232 (2011).CrossRefGoogle ScholarPubMed
Wittstock, A., Zielasek, V., Biener, J., Friend, C.M., and Baumer, M.: Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327(5963), 319 (2010).CrossRefGoogle ScholarPubMed
Yu, Y., Gu, L., Lang, X.Y., Zhu, C.B., Fujita, T., Chen, M.W., and Maier, J.: Li storage in 3D nanoporous au-supported nanocrystalline tin. Adv. Mater. 23(21), 2443 (2011).CrossRefGoogle ScholarPubMed
Wada, T., Setyawan, A.D., Yubuta, K., and Kato, H.: Nano- to submicro-porous beta-Ti alloy prepared from dealloying in a metallic melt. Scr. Mater. 65(6), 532 (2011).CrossRefGoogle Scholar
Mathur, A. and Erlebacher, J.: Size dependence of effective Young's modulus of nanoporous gold. Appl. Phys. Lett. 90(6), 061910 (2007).CrossRefGoogle Scholar
Seker, E., Gaskins, J.T., Bart-Smith, H., Zhu, J., Reed, M.L., Zangari, G., Kelly, R., and Begley, M.R.: The effects of post-fabrication annealing on the mechanical properties of freestanding nanoporous gold structures. Acta Mater. 55(14), 4593 (2007).CrossRefGoogle Scholar
Youssef, S., Maire, E., and Gaertner, R.: Finite element modelling of the actual structure of cellular materials determined by x-ray tomography. Acta Mater. 53(3), 719 (2005).CrossRefGoogle Scholar
Wang, J., Chen, Y-C.K., Yuan, Q., Tkachuk, A., Erdonmez, C., Hornberger, B., and Feser, M.: Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3D spatial resolution. Appl. Phys. Lett. 100(14), 143107 (2012).CrossRefGoogle Scholar
De Carlo, F., Xiao, X.H., and Tieman, B.: X-ray tomography system, automation and remote access at beamline 2-BM of the advanced photon source - art. no. 63180K. In 5th Conference on Developments in X-Ray Tomography, Vol. 6318, Bellingham, WA, 2006, p. K3180.Google Scholar
Natterer, F.: The Mathematics of Computerized Tomography (Wiley, Philadelphia, PA, 1986), pp. 102118.CrossRefGoogle Scholar
Zbik, M., Martens, W., Frost, R., Song, Y., Chen, Y., and Chen, J.: Transmission x-ray microscopy (TXM) reveals the nanostructure of a smectite gel. Langmuir 24(16), 8954 (2008).CrossRefGoogle ScholarPubMed
Lombardo, J.J., Ristau, R.A., Harrisa, W.M., and Chiu, W.K.S.: Focused ion beam preparation of samples for x-ray nanotomography. J. Synchrotron Radiat. 19, 789 (2012).CrossRefGoogle ScholarPubMed
Chen-Wiegart, Y-c.K., Cronin, J.S., Yuan, Q., Yakal-Kremski, K.J., Barnett, S.A., and Wang, J.: 3D non-destructive morphological analysis of a solid oxide fuel cell anode using full-field x-ray nano-tomography. J. Power Sources 218, 348 (2012).CrossRefGoogle Scholar
Shearing, P.R., Golbert, J., Chater, R.J., and Brandon, N.P.: 3D reconstruction of SOFC anodes using a focused ion beam lift-out technique. Chem. Eng. Sci. 64(17), 3928 (2009).CrossRefGoogle Scholar
Munch, B. and Holzer, L.: Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion J. Am. Ceram. Soc. 91(12), 4059 (2008).CrossRefGoogle Scholar
Maire, E., Caty, O., King, A., and Adrien, J.: X-ray tomography study of cellular materials: Experiments and modelling, in Iutam Symposium on Mechanical Properties of Cellular Materials, Vol. 12, 2009, p. 35.CrossRefGoogle Scholar
Alkemper, J. and Voorhees, P.W.: Three-dimensional characterization of dendritic microstructures. Acta Mater. 49(5), 897 (2001).CrossRefGoogle Scholar
Liu, Z., Cronin, J.S., Chen-Wiegart, Y-C.K., Wilson, J.R., Yakal-Kremski, K.J., Wang, J., Faber, K.T., and Barnett, S.A.: Three-dimensional morphological measurements of LiCoO2 and LiCoO2/Li(Ni1/3Mn1/3Co1/3)O2 lithium-ion battery cathodes. J. Power Sources 227, 267274 (2013).CrossRefGoogle Scholar
Chen-Wiegart, Y-c.K., Liu, Z., Faber, K.T., Barnett, S.A., and Wang, J.: 3D analysis of a LiCoO2-Li(Ni1/3Mn1/3Co1/3)O2 Li-ion battery positive electrode using x-ray nano-tomography. Electrochem. Commun. 28, 127130 (2013).CrossRefGoogle Scholar
Chen-Wiegart, Y-c.K., Wang, S., Chu, Y.S., Liu, W., McNulty, I., Voorhees, P.W., and Dunand, D.C.: Structural evolution of nanoporous gold during thermal coarsening. Acta Mater. 60, 4972 (2012).CrossRefGoogle Scholar
Rosner, H., Parida, S., Kramer, D., Volkert, C., and Weissmuller, J.: Reconstructing a nanoporous metal in three dimensions: An electron tomography study of dealloyed gold leaf. Adv. Eng. Mater. 9(7), 535 (2007).CrossRefGoogle Scholar
Maire, E., Colombo, P., Adrien, J., Babout, L., and Biasetto, L.: Characterization of the morphology of cellular ceramics by 3D image processing of x-ray tomography. J. Eur. Ceram. Soc. 27(4), 1973 (2007).CrossRefGoogle Scholar
Thorat, I.V., Stephenson, D.E., Zacharias, N.A., Zaghib, K., Harb, J.N., and Wheeler, D.R.: Quantifying tortuosity in porous Li-ion battery materials. J. Power Sources 188(2), 592 (2009).CrossRefGoogle Scholar
Kwon, Y., Thornton, K., and Voorhees, P.W.: The topology and morphology of bicontinuous interfaces during coarsening. Europhys. Lett. 86(4), 46005 (2009).CrossRefGoogle Scholar
Kwon, Y., Thornton, K., and Voorhees, P.: Coarsening of bicontinuous structures via nonconserved and conserved dynamics. Phys. Rev. E 75(2), 021120 (2007).CrossRefGoogle ScholarPubMed
Kammer, D. and Voorhees, P.W.: The morphological evolution of dendritic microstructures during coarsening. Acta Mater. 54(6), 1549 (2006).CrossRefGoogle Scholar
Chen, Y.c.K., Chu, Y.S., Yi, J., McNulty, I., Shen, Q., Voorhees, P.W., and Dunand, D.C.: Morphological and topological analysis of coarsened nanoporous gold by x-ray nanotomography. Appl. Phys. Lett. 96(4), 043122 (2010).CrossRefGoogle Scholar
Supplementary material: File

Chen-Wiegart Supplementary Material

Appendix

Download Chen-Wiegart Supplementary Material(File)
File 3 MB