Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-08T04:14:47.011Z Has data issue: false hasContentIssue false

Acoustic wave stimulation of low temperature ceramic reactions: The system Al2O3−P2O5−H2O

Published online by Cambridge University Press:  31 January 2011

Rustum Roy
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Dinesh K. Agrawal
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
V. Srikanth
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Acoustic energy has been primarily used in materials research to disaggregate solids and/or disperse them in fluids. It has also been used in a few studies to influence or cause new reactions in organic and organometallic systems. However, the potential of acoustic energy in the area of inorganic reactions and materials science has been virtually unexploited. We report herein new effects of acoustic waves in catalyzing reactions in the systems Al2O3 + H2O and Al2O3 + P2O5 + H2O. In this study the effect of different alumina precursors and their particle size on their reactivity with water and H3PO4 was investigated when exposed to 20 kHz waves.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Richards, W. T. and Loomis, A. L., J. Am. Chem. Soc. 49, 3086 (1927).CrossRefGoogle Scholar
2.Fry, A. J. and Herr, D., Tetrahedron Lett. 19, 1721 (1978).CrossRefGoogle Scholar
3.Boudjouk, P. and Han, B. H., Tetrahedron Lett. 22, 3813 (1981).CrossRefGoogle Scholar
4.Regen, S. L. and Singh, A., J. Org. Chem. 47, 1587 (1982).CrossRefGoogle Scholar
5.Suslick, K. S., Gawienowski, J. J., Schubert, P. F., and Wang, H. H., J. Phys. Chem. 87, 2299 (1983).CrossRefGoogle Scholar
6.Elguero, J., Goya, P., Lessavetzky, J., and Valdeomillos, A. M., C.R. Acad. Sci., Ser. 2 298, 877 (1984).Google Scholar
7.Han, B. H., Shin, D. H., and Cho, S. Y., Bull. Korean Chem. Soc. 6, 320 (1985).Google Scholar
8.Boudjouk, P., Sooriyakumaran, R., and Han, B. H., J. Org. Chem. 51, 2818 (1986).CrossRefGoogle Scholar
9.Einhorn, C., Einhorn, J., and Luche, J. L., Synthesis 11, 787 (1989).CrossRefGoogle Scholar
10.Suslick, K. S.,Science 247, 14391445 (1990); see also K. S.Suslick, Adv. Organomet. Chem. 25, 73 (1986).CrossRefGoogle Scholar
11.Bremner, D., Che. Brit. 22, 633 (1986).Google Scholar
12.Mason, T. J. and Lorimer, J. P., Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry (Ellis Horwood, Chichester, U. K., 1988).Google Scholar
13.Margulis, M. A., Russ. J. Phys. Chem. 50, 1 (1976).Google Scholar
14.Suslick, K. S., Nature 247, 1439 (1990).Google Scholar
15.Marinesco, N. and Trillat, J. J., Seances, C. R.Acad. Sci. 196, 858 (1933).Google Scholar
16.Frenzel, H. and Schueltes, H., Z. Phys. Chem. B 27, 421 (1935).Google Scholar
17.Brohult, S., Nature 40, 807 (1937).Google Scholar
18.Lorimer, J. P. and Mason, T. J., Chem. Soc. Rev. 16, 239 (1987).CrossRefGoogle Scholar
19.Roy, R., Komarneni, S., and Yang, L. J., J. Am. Ceram. Soc. 68, 392 (1985).CrossRefGoogle Scholar
20.Komarneni, S. and Roy, R., Mater. Lett. 4, 107 (1986).CrossRefGoogle Scholar
21.Roy, R. and Agrawal, D. K., unpublished data.Google Scholar
22.Agrawal, D. K., Silsbee, M. R., Roy, D. M., and Roy, R., in Specialty Cements with Advanced Properties, edited by Jennings, H., Landers, A., Scheetz, B. E., and Odler, I. (Mater. Res. Soc. Symp. Proc. 179, Pittsburgh, PA, 1991), p. 181.Google Scholar
23.Suslick, K. S., Casadoute, D. J., Green, M. L. H., and Thompson, M. E., Ultrasonics 25, 56 (1987).CrossRefGoogle Scholar