Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T23:23:26.687Z Has data issue: false hasContentIssue false

An efficient solution for the single-step synthesis of 4CaO·Al2O3·Fe2O3 powders

Published online by Cambridge University Press:  31 January 2011

Robert Ianoş*
Affiliation:
“Politehnica” University of Timişoara, Faculty of Industrial Chemistry and Environmental Engineering, Timişoara 300006, Romania
*
a) Address all correspondence to this author. e-mail: robert_ianos@yahoo.com
Get access

Abstract

Single-phase nanocrystalline 4CaO·Al2O3·Fe2O3 powders were prepared directly from the combustion reaction using a new cost-effective, time-saving, and environmentally friendly version of solution combustion synthesis. Instead of a single fuel, a fuel mixture of urea and β-alanine was used. It was shown by x-ray diffraction, energy-dispersive x-ray analysis, thermogravimetric analysis, and optical microscopy that this new version of the solution combustion synthesis allows the maximization of the exothermic effect associated with the combustion reaction. On the other hand, it was shown that the traditional version of combustion synthesis involving the use of a single fuel, such as urea or β-alanine, does not ensure the formation of Ca4Al2Fe2O10 unless subsequent thermal treatments are applied. It was suggested that the occurrence of combustion reactions cannot be regarded only in terms of adiabatic temperature, as the kinetic aspects overrule the thermodynamic ones.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Oh, S.H., Finones, R., Jin, S., Choi, S.Y., Kim, K.N.: Influence of tricalcium aluminate phase on in vitro biocompatibility and bioactivity of calcium aluminate bone cement J. Mater. Res. 19, 1062 2004CrossRefGoogle Scholar
2.Black, L., Breen, C., Yarwood, J., Phipps, J., Maitland, G.: In situ Raman analysis of hydrating C3A and C4AF pastes in presence and absence of sulphate Adv. Appl. Ceram. 105, 209 2006CrossRefGoogle Scholar
3.Maki, I., Ichikawa, M., Yoshida, H., Yoshida, T.: Anisotropic light absorption of the ferrite solid solutions Ca2(Fe1−xAlx)O5 Cem. Concr. Res. 26, 1801 1996CrossRefGoogle Scholar
4.Lea, F.M.: Lea's Chemistry of Cement and Concrete 4th ed. edited by Hewlett, P.C. Elsevier Butterworth-Heinemann 1988 231Google Scholar
5.Evju, C., Emanuelson, A., Solberg, S., Hansen, S.: Crystal structures of cementitious compounds. Part 2: Calcium aluminates and calcium aluminoferrites ZKG Int. 55, 80 2002Google Scholar
6.Redhammer, G.J., Tippelt, G., Rot, G., Amthauer, G.: Structural variations in the brownmillerite series Ca2(Fe2–xAlx)O5: Single-crystal x-ray diffraction at 25 °C and high-temperature x-ray powder diffraction (25 °C 9T 9 1000 °C) Am. Mineral. 89, 405 2004CrossRefGoogle Scholar
7.Malveiro, J., Ramos, T., Ferreira, L.P., Warenborgh, J.C., Nunes, M.R., Godinho, M., Carvalho, M.D.: Magnesium doping on brownmillerite Ca2FeAlO5 J. Solid State Chem. 180, 1863 2007Google Scholar
8.Neubauer, J., Sieber, R., Kuzel, H.J., Ecker, M.: Investigations on introducing Si and Mg into brownmillerite—A Rietveld refinement Cem. Concr. Res. 26, 77 1996Google Scholar
9.Hassaan, M.Y., Desoky, M.M., Salem, S.M., Yousif, A.A.: Some physical properties of anhydrous and hydrated brownmillerite doped with NaF Cem. Concr. Res. 33, 697 2003CrossRefGoogle Scholar
10.Hassaan, M.Y., Diouri, F.M., Salah, S.H.: Variation of some physical properties of brownmillerite doped with a transition metal oxide Hyperfine Interact. 156/157, 459 2004CrossRefGoogle Scholar
11.Landa-Cánovas, A.R., Hansen, S.: Transmission electron microscopic study of ferrite in sulfate-resisting Portland cement clinker Cem. Concr. Res. 29, 679 1999CrossRefGoogle Scholar
12.Eisuke, S., Naomitsu, T., Yoshio, A., Osamu, M.: Synthesis and characteristic feature of 4CaO·Al2O3·Fe2O3-based glass with and without SiO2 J. Ceram. Soc. Jpn. 104, 631 1996Google Scholar
13.Shanahan, N., Zayed, A.: Cement composition and sulfate attack. Part I Cem. Concr. Res. 37, 618 2007CrossRefGoogle Scholar
14.Csizmadia, J., Balázs, G., Tamás, F.D.: Chloride ion binding capacity of aluminoferrites Cem. Concr. Res. 31, 577 2001CrossRefGoogle Scholar
15.Suryavanshi, A.K., Scantlebury, J.D., Lyon, S.B.: The binding of chloride ions by sulphate resistant portland cement Cem. Concr. Res. 25, 581 1995CrossRefGoogle Scholar
16.Gaki, A., Chrysafi, R., Kakali, G.: Chemical synthesis of hydraulic calcium aluminate compounds using the Pechini technique J. Eur. Ceram. Soc. 27, 1781 2007CrossRefGoogle Scholar
17.Lee, S.J., Benson, E.A., Kriven, W.M.: Preparation of Portland cement components by PVA solution polymerization J. Am. Ceram. Soc. 82, 2049 1999Google Scholar
18.Lee, S.J., Kriven, W.M.: Synthesis and hydration study of Portland cement components prepared by the organic steric entrapment method Mater. Struct. 38, 87 2005CrossRefGoogle Scholar
19.Patil, K.C., Aruna, S.T., Mimani, T.: Combustion synthesis: An update Curr. Opin. Solid State Mater. Sci. 6, 507 2002CrossRefGoogle Scholar
20.Ianoş, R., Lazău, I., Păcurariu, C., Barvinschi, P.: Peculiarities of CaO·6Al2O3 formation by using low-temperature combustion synthesis Eur. J. Inorg. Chem. 6, 925 2008CrossRefGoogle Scholar
21.Ianoş, R., Lazău, I., Păcurariu, C., Barvinschi, P.: Application of new organic fuels in the direct MgAl2O4 combustion synthesis Eur. J. Inorg. Chem. 6, 931 2008CrossRefGoogle Scholar
22.Knacke, O., Kubaschewski, O., Hesselmann, K.: Thermochemical Properties of Inorganic Substances 2nd ed.Springer-Verlag Berlin 1991Google Scholar
23.Erri, P., Pranda, P., Varma, A.: Oxidizer-fuel interactions in aqueous combustion synthesis. 1. Iron(III) nitrate-model fuels Ind. Eng. Chem. Res. 43, 3092 2004CrossRefGoogle Scholar
24.Badica, P., Aldica, G., Crisan, A.: Decomposition of Ca:Cu = 1:1 nitrate powder: Thermal analysis and structural studies J. Mater. Sci. 37, 585 2002Google Scholar
25.Pacewska, B., Keshr, M.: Thermal transformations of aluminium nitrate hydrate Thermochim. Acta 385, 73 2002CrossRefGoogle Scholar