Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T23:26:19.606Z Has data issue: false hasContentIssue false

An investigation of ductility and microstructural evolution in an Al−3% Mg alloy with submicron grain size

Published online by Cambridge University Press:  03 March 2011

Jingtao Wang
Affiliation:
Department of Materials Science and Engineering, Kyushu University, Fukuoka 812, Japan
Zenji Horita
Affiliation:
Department of Materials Science and Engineering, Kyushu University, Fukuoka 812, Japan
Minoru Furukawa
Affiliation:
Department of Materials Science and Engineering, Kyushu University, Fukuoka 812, Japan
Minoru Nemoto
Affiliation:
Department of Materials Science and Engineering, Kyushu University, Fukuoka 812, Japan
Nikolai K. Tsenev
Affiliation:
Institute for Metals Superplasticity Problems, Russian Academy of Sciences, Ufa 450001, Russia
Ruslan Z. Valiev
Affiliation:
Institute for Metals Superplasticity Problems, Russian Academy of Sciences, Ufa 450001, Russia
Yan Ma
Affiliation:
Departments of Materials Science and Mechanical Engineering, University of Southern California, Los Angeles, California 90089-1453
Terence G. Langdon
Affiliation:
Departments of Materials Science and Mechanical Engineering, University of Southern California, Los Angeles, California 90089-1453
Get access

Abstract

A submicrometer-grained (SMG) Al−3% Mg solid solution alloy, with an initial grain size of ∼0.2 μm, was produced by intense plastic straining. Experiments show that tensile specimens of the SMG alloy exhibit high elongations to failure at low testing strain rates at the relatively low temperature of 403 K. The stress exponent is high (∼7–8) and calculations show deformation is within the region of power-law breakdown. The initial microstructure of the alloy consists of diffuse boundaries between highly deformed grains. At strain rates of ∼10−4 s−1 and lower, plastic deformation leads to dynamic recrystallization and the formation of highly nonequilibrium grain boundaries that gradually evolve into a more equilibrated configuration.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Langdon, T. G., Metall. Trans. 13A, 689 (1982).CrossRefGoogle Scholar
2Siegel, R. W., in Superplasticity in Metals, Ceramics, and Intermetallics, edited by Mayo, M. J., Kobayashi, M., and Wadsworth, J. (Mater. Res. Soc. Symp. Proc. 196, Pittsburgh, PA, 1990), p. 59.Google Scholar
3Mayo, M. J., in Mechanical Properties and Deformation Behavior of Materials Having Ultrafine Microstructures (Kluwer Press, Dordrecht, The Netherlands, 1993, in press).Google Scholar
4Mayo, M. J., Hague, D. C., and Chen, D-J., Mater. Sci. Eng. A (in press).Google Scholar
5Cui, Z. and Hahn, H., Nanostruct. Mater. 1, 419 (1992).CrossRefGoogle Scholar
6Smirnova, N. A., Levit, V. I., Pilyugin, V. I., Kuznetsov, R. I., Davydova, L. S., and Sazonova, V. A., Fiz. Met. Metalloved. 61, 1170 (1986).Google Scholar
7Valiev, R. Z., Kaibyshev, O. A., Kuznetsov, R. I., Musalimov, R. Sh., and Tsenev, N.K., Dok. Akad. Nauk SSSR 301, 864 (1988).Google Scholar
8Valiev, R. Z., Krasilnikov, N. A., and Tsenev, N. K., Mater. Sci. Eng. A 137, 35 (1991).CrossRefGoogle Scholar
9Valiev, R. Z., Mulyukov, R. R., and Ovchinnikov, V. V., Philos. Mag. Lett. 62, 253 (1990).CrossRefGoogle Scholar
10Musalimov, R.Sh. and Valiev, R.Z., Scripta Metall. Mater. 27, 1685 (1992).CrossRefGoogle Scholar
11Yavari, P. and Langdon, T. G., Acta Metall. 30, 2182 (1982).Google Scholar
12Langdon, T. G. and Vastava, R. B., in Advances in Fracture Research, edited by Frangois, D. (Pergamon Press, Oxford, England, 1981), Vol. 4, p. 1635.Google Scholar
13Segal, V. M., Reznikov, V. I., Drobyshevski, F. E., and Kopylov, V. I., Izv. Akad. Nauk SSSR-Metally 1, 115 (1981).Google Scholar
14Valiev, R. Z. and Tsenev, N. K., in Hot Deformation of Aluminum Alloys, edited by Langdon, T.G., Merchant, H. D., Morris, J. G., and Zaidi, M. A. (The Minerals, Metals and Materials Society, Warrendale, PA, 1991), p. 319.Google Scholar
15Abdulov, R. Z., Valiev, R. Z., and Krasilnikov, N. A., J. Mater. Sci. Lett. 9, 1445 (1990).CrossRefGoogle Scholar
16Valiev, R. Z., Chmelik, F., Bordeaux, F., Kapelski, G., and Baudelet, B., Scripta Metall. Mater. 27, 855 (1992).CrossRefGoogle Scholar
17Yavari, P., Miller, D. A., and Langdon, T. G., Acta Metall. 30, 871 (1982).CrossRefGoogle Scholar
18Yavari, P., Mohamed, F. A., and Langdon, T. G., Acta Metall. 29, 1495 (1981).CrossRefGoogle Scholar
19Horita, Z. and Langdon, T. G., in Strength of Metals and Alloys (ICSMA 7), edited by McQueen, H. J., Ballon, J-P., Dickson, J. I., Jonas, J. J., and Akben, M. G. (Pergamon Press, Oxford, England, 1985), Vol. 1, p. 791.Google Scholar
20Endo, T., Shimada, T., and Langdon, T. G., Acta Metall. 32, 1991 (1984).CrossRefGoogle Scholar
21Horita, Z., Shimada, T., Endo, T., and Langdon, T. G., in Proceedings of the Third International Conference on Creep and Fracture of Engineering Materials and Structures, edited by Wilshire, B. and Evans, R. W. (The Institute of Metals, London, England, 1987), p. 113.Google Scholar
22Nix, W. D. and Ilschner, B., in Strength of Metals and Alloys (ICSMA 5), edited by Haasen, P., Gerold, V., and Kostorz, G. (Pergamon Press, Oxford, England, 1980), Vol. 3, p. 1503.Google Scholar
23Sherby, O. D. and Burke, P. M., Prog. Mater. Sci. 13, 325 (1967).Google Scholar
24Mohamed, F. A. and Langdon, T. G., Metall. Trans. 5, 2339 (1974).CrossRefGoogle Scholar
25Rothman, S. J., Peterson, N. L., Nowicki, L. J., and Robinson, L. C., Phys. Status Solidi B 63, K29 (1974).Google Scholar
26Raj, S. V. and Langdon, T. G., Acta Metall. 37, 843 (1989).CrossRefGoogle Scholar
27Lloyd, D. J. and Moore, D. M., in Superplastic Forming of Structural Alloys, edited by Paton, N. E. and Hamilton, C. H. (The Metallurgical Society of AIME, Warrendale, PA, 1982), p. 147.Google Scholar