Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T05:34:29.062Z Has data issue: false hasContentIssue false

Antiphotocorrosive photocatalysts containing CdS nanoparticles and exfoliated TiO2 nanosheets

Published online by Cambridge University Press:  31 January 2011

Gang Liu
Affiliation:
Australian Research Council (ARC) Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Qld 4072, Australia
Yong Wang
Affiliation:
Australian Research Council (ARC) Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Qld 4072, Australia; and School of Engineering, The University of Queensland, Qld 4072, Australia
Xianfang Zhu
Affiliation:
China-Australia Joint Laboratory for Functional Nanomaterials, Department of Physics, Xiamen University, Xiamen, 361005 China
Jin Zou
Affiliation:
School of Engineering, The University of Queensland, Qld 4072, Australia
Gao Qing (Max) Lu*
Affiliation:
Australian Research Council (ARC) Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Qld 4072, Australia
*
b)Address all correspondence to this author. e-mail: maxlu@uq.edu.au
Get access

Abstract

Aimed at designing an efficient visible light active photocatalyst and suppressing the self-corrosion tendency of CdS nanoparticles, a novel composite consisting of CdS nanoparticles and exfoliated two-dimensional (2D) TiO2 nanosheets was successfully fabricated using a simple self-assembly process. The prepared samples were characterized using various techniques including x-ray diffraction, ultraviolet–visible absorption spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. It was found that the exfoliated 2D nanosheets played an important role as an ultrathin coating to suppress the photocorrosion of CdS nanoparticles, evidenced by inductively coupled plasma-atomic emission spectrometer analysis. The resultant CdS/TiO2 composites exhibited enhanced photocatalytic activity in the oxidation of Rhodamine B in water under visible light irradiation (λ > 420 nm).

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fox, M.A., Dulay, M.T.Heterogeneous photocatalysis. Chem. Rev. 93, 341 (1993)CrossRefGoogle Scholar
2.Linsebigler, A.L., Lu, G.Q., Yates, J.T.Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995)CrossRefGoogle Scholar
3.Anpo, M., Yamashita, H., Zhang, S.G.Photoinduced surface chemistry. Curr. Opin. Solid State Mater. Sci. 1, 630 (1996)CrossRefGoogle Scholar
4.Kamat, P.V.Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111, 2834 (2007)CrossRefGoogle Scholar
5.Hoffmann, M.R., Martin, S.T., Choi, W.Y., Bahnemann, D.W.Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
6.Kamat, P.V., Meisel, D.Nanoparticles in advanced oxidation processes. Curr. Opin. Colloid Interface Sci. 7, 282 (2002)CrossRefGoogle Scholar
7.Fujishima, A., Honda, K.Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)CrossRefGoogle Scholar
8.Carp, O., Huisman, C.L., Reller, A.Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32, 33 (2004)CrossRefGoogle Scholar
9.Chen, X., Mao, S.S.Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007)CrossRefGoogle ScholarPubMed
10.Liu, G., Wang, L.Z., Sun, C.H., Chen, Z.G., Yan, X.X., Chen, L.N., Cheng, H.M., Lu, G.Q.Nitrogen-doped titania nanosheets towards visible light response. Chem. Commun. (Camb.) 2009, 1383 (2009)CrossRefGoogle Scholar
11.Liu, G., Wang, L.Z., Sun, C.H., Yan, X.X., Wang, X.W., Chen, Z.G., Smith, S.C., Cheng, H.M., Lu, G.Q.Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titaniate. Chem. Mater. 21, 1266 (2009)CrossRefGoogle Scholar
12.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)CrossRefGoogle ScholarPubMed
13.Zhang, L.W., Fu, H.B., Zhu, Y.F.Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv. Funct. Mater. 18, 2180 (2008)CrossRefGoogle Scholar
14.Zong, X., Yan, H.J., Wu, G.P., Ma, G.J., Wen, F.Y., Wang, L., Li, C.Enhancement of photocatalytic H-2 evolution on CdS by loading MOS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 7176 (2008)CrossRefGoogle Scholar
15.Anpo, M., Takeuchi, M.The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 216, 505 (2003)CrossRefGoogle Scholar
16.Yu, J.C., Wu, L., Lin, J., Li, P.S., Li, Q.Microemulsion-mediated solvothermal synthesis of nanosized CdS-sensitized TiO2 crystalline photocatalyst. Chem. Commun. (Camb.). 1552 (2003)CrossRefGoogle Scholar
17.Bessekhouad, Y., Chaoui, N., Trzpit, M., Ghazzal, N., Robert, D., Weber, J.V.UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension. J. Photochem. Photobiol., A 183, 218 (2006)CrossRefGoogle Scholar
18.Silva, L.A., Ryu, S.Y., Choi, J., Choi, W., Hoffmann, M.R.Photocatalytic hydrogen production with visible light over Pt-interlinked hybrid composites of cubic-phase and hexagonal-phase CdS. J. Phys. Chem. C 112, 12069 (2008)CrossRefGoogle Scholar
19.Bessekhouad, Y., Robert, D., Weber, J.Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J. Photochem. Photobiol., A 163, 569 (2004)CrossRefGoogle Scholar
20.Guo, Y.G., Hu, J.S., Liang, H.P., Wan, L.J., Bai, C.L.TiO2-based composite nanotube arrays prepared via layer-by-layer assembly. Adv. Funct. Mater. 15, 196 (2005)CrossRefGoogle Scholar
21.Jang, J.S., Choi, S.H., Park, H., Choi, W., Lee, J.S.A composite photocatalyst of CdS nanoparticles deposited on TiO2 nanosheets. J. Nanosci. Nanotechnol. 6, 3642 (2006)CrossRefGoogle ScholarPubMed
22.Wu, L., Yu, J.C., Fu, X.Z.Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. J. Mol. Catal. A: Chem. 244, 25 (2006)CrossRefGoogle Scholar
23.Ryu, S.Y., Balcerski, W., Lee, T.K., Hoffmann, M.R.Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas. J. Phys. Chem. C 111, 18195 (2007)CrossRefGoogle Scholar
24.Di Paola, A., Addamo, M., Palmisano, L.Mixed oxide/sulfide systems for photocatalysis. Res. Chem. Intermed. 29, 467 (2003)CrossRefGoogle Scholar
25.Sasaki, T., Watanabe, M.Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate. J. Am. Chem. Soc. 120, 4682 (1998)CrossRefGoogle Scholar
26.Sasaki, T., Ebina, Y., Tanaka, T., Harada, M., Watanabe, M., Decher, G.Layer-by-layer assembly of titania nanosheet/polycation composite films. Chem. Mater. 13, 4661 (2001)CrossRefGoogle Scholar
27.Wang, L.Z., Sasaki, T., Ebina, Y., Kurashiya, Y., Watanabe, M.Fabrication of controllable ultrathin hollow shells by layer-by-layer assembly of exfoliated titania nanosheets on polymer templates. Chem. Mater. 14, 4827 (2002)CrossRefGoogle Scholar
28.Wang, L.Z., Ebina, Y., Takada, K., Sasaki, T.Ultrathin films and hollow shells with pillared architectures fabricated via layer-by-layer self-assembly of titania nanosheets and aluminum Keggin Ions. J. Phys. Chem. B 108, 4283 (2004)CrossRefGoogle Scholar
29.Wang, L.Z., Ebina, Y., Takada, K., Sasaki, T.A new mesoporous manganese oxide pillared with double layers of alumina. Adv. Mater. 16, 1412 (2004)CrossRefGoogle Scholar
30.Sakai, N., Ebina, Y., Takada, K., Sasaki, T.Electronic band structure for titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J. Am. Chem. Soc. 126, 5851 (2004)CrossRefGoogle ScholarPubMed