Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T21:22:22.007Z Has data issue: false hasContentIssue false

Application of chemical vapor deposited yttria for the protection of silicon carbide fibers in a SiC/Ni3Al compositea)

Published online by Cambridge University Press:  31 January 2011

D. J. Larkin
Affiliation:
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180-3590
L. V. Interrante
Affiliation:
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180-3590
A. Bose*
Affiliation:
Department of Materials Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590
*
b)Currently at the Southwest Research Institute.
Get access

Abstract

A CVD process has been developed for coating Textron-Avco SCS-6 SiC fiber with yttria. Both Y(fod)3·H2O and Y(thd)3 (fod = 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedionato; thd = 2,2,6,6-tetramethyl-3,5-heptanedionato) were examined as potential Y2O3 CVD precursors. Analysis of the deposits by Auger spectroscopy indicated significant F and C'incorporation in the case of Y(fod)3 · H2O whereas, under appropriate conditions, Y(thd)3 gave a deposit which was essentially free of C and other impurities. GCFTIR analysis of the volatile products of the CVD process indicated isobutylene, tetrafluoroethylene, 1,1-difluoroethylene, fluoroform, and fluoroethylene for Y(fod)3 · H2O and mainly isobutylene and propylene for Y(thd)3. The precursor Y(thd)3 was chosen to deposit 1–2 μm of yttria on short lengths of silicon carbide fibers. The coated fibers were then incorporated into a nickel aluminide (Ni3Al) matrix by reactive sintering, with yttria affording protection from the known SiC + 2Ni ⇉ Ni2Si + C degradation process. The SiC/Ni3Al composites, before and after annealing at 1000 °C for up to 100 h, were studied by using SEM and EMPA to determine the extent of reaction. With the exception of certain portions of the fibers that were inadequately coated with yttria, complete protection of the fibers was indicated.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a)

Presented at the 14th Annual Conference on Composite Materials and Structures, American Ceramic Society Closed Sessions (January 1990), Cocoa Beach, Florida.

References

REFERENCES

1Jeng, S.M., Kai, W., Shih, C. J., and Yang, J-M., Mater. Sci. Eng. A114, 189196 (1989) and refs. therein.CrossRefGoogle Scholar
2Yang, J-M., Kao, W. H., and Liu, C.T., Metall. Trans. A 20A, 2459 (1989).CrossRefGoogle Scholar
3Jackson, M. R., Mehan, R. L., Davis, A. M., and Hall, E. L., Metall. Trans. A 14A, 355 (1983).CrossRefGoogle Scholar
4Addhoum, H. and Broussaud, D., Mater. Sei. Eng. A109, 379387 (1989).CrossRefGoogle Scholar
5Hall, E. L., Kouh, Y. M., Jackson, M. R., and Mehan, R. L., Metall. Trans. A 14A, 781 (1983).CrossRefGoogle Scholar
6Mehan, R. L., Jackson, M. R., and McConnell, M. D., J. Mater. Sci. 18 (11), 3195 (1983).CrossRefGoogle Scholar
7Mehan, R. L. and Jackson, M. R., Ceram. Eng. Sci. Proc. 3 (9–10), 484503 (1982).CrossRefGoogle Scholar
8Sievers, R.E., Eisentraut, K.J., Springer, C.S. Jr., and Meek, D.W., Lanthanide I Actiniae Chemistry, Advances in Chemistry (ACS, 1967), Vol. 71, pp. 141154.Google Scholar
9Kamata, K., Matsumato, S., and Shibata, Y., Yogyo Kyokaishi 90 (1), 4647 (1982);Google Scholar
Berry, A. D., Gaskill, D. K., Holm, R.T., Cukauskas, E. J., Kaplan, R., and Henry, R. L., Appl. Phys. Lett. 52 (20), 17431745 (1988);CrossRefGoogle Scholar
Purdy, A.P., Berry, A.D., Holm, R.T., Fatemi, M., and Gaskill, D. K., Inorg. Chem. 28, 27992803 (1989).CrossRefGoogle Scholar
10Interrante, L.V., Jiang, Z., and Larkin, D. J., Chemistry of High Temperature Superconductors II, ACS Symposium Series 377, edited by Nelson, D. L. and George, T. F., 168180 (1988).CrossRefGoogle Scholar
11Varyukhin, V. A., Vodzinskiy, V. Yu., Domrachev, G.A., Kozyrkin, B.I., Kutyreva, V.V., and Suvorova, O. N., Probi. Khim. Primen. Beta-Diketonatov Met., edited by V. Spitsyn, 1st ed., 178184 (1982).Google Scholar
12Zhao, J., Marcy, H. O., Tonge, L. M., Wessels, B.W., Marks, T. J., and Kannewurf, C.R., Phys. C 159, 710714 (1989).CrossRefGoogle Scholar
13Zhao, J., Dahmen, K-H., Marcy, H. O., Tonge, L. M., Wessels, B.W., Marks, T. J., and Kannewurf, C. R., Solid State Commun. 69 (2), 187189 (1989).CrossRefGoogle Scholar
14Reichert, C., Bancroft, G. M., and Westmore, J. B., Can. J. Chem. 48, 1362 (1970).CrossRefGoogle Scholar
15Garnett, J. L., Gregor, I. K., and Guilhaus, M., Org. Mass. Spec. 13 (10), 591 (1978).CrossRefGoogle Scholar
16Clobes, A. L., Morris, M.L., and Koob, R. D., Org. Mass. Spec. 3, 1255 (1970).CrossRefGoogle Scholar
16aGavrishchuk, E. M., Dzyubenko, N. G., Martynenko, L.I., and Gaivoronskii, P. E., Zhur. Neorg. Khim. 28, 871 (1983).Google Scholar
16bMcDonald, J. D. and Margrave, J. L., J. Less-Common Metals 14, 236 (1968).CrossRefGoogle Scholar
17Holcombe, C. E. and Carpenter, D. A., J. Am. Ceram. Soc. 64, C82 (1981).CrossRefGoogle Scholar
18Bose, A., Rabin, B. H., and German, R. M., Powder Metall. Int. 20 (3), 2530 (1988).Google Scholar
19Naiborodenko, Yu. S., Lavrenchuk, G.V., and Filatov, V.M., Poroshk. Metall. 12 (240), 4 (1982).Google Scholar
20Schiepers, R. C. J., van Loo, F. J. J., and de, G. With, J. Am. Ceram. Soc. 71 (6), C284 (1988).CrossRefGoogle Scholar
21Ohdomari, I., Sha, S., Aochi, H., Chikyow, T., and Suzuki, S., J. Appl. Phys. 62 (9), 3747 (1987).CrossRefGoogle Scholar
22Pai, C. S., Hanson, C. M., and Lau, S. S., J. Appl. Phys. 57 (2), 618 (1985).CrossRefGoogle Scholar
23Cornie, J.A., Cook, C.S., and Anderson, C.A., NASA Contract Report, NASA-CR-134958.Google Scholar
24 This was evidenced by the observation of protruding fiber ends and holes on the fracture surfaces of broken samples.Google Scholar