Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T01:49:48.456Z Has data issue: false hasContentIssue false

Application of nuclear reaction analysis to trace oxygen analysis in metal fluoride materials

Published online by Cambridge University Press:  31 January 2011

B-L. Hu
Affiliation:
Brookhaven National Laboratory, Upton, New York 11973
K. W. Jones
Affiliation:
Brookhaven National Laboratory, Upton, New York 11973
F. N. Tebbe
Affiliation:
E. I. du Pont de Nemours & Company, Wilmington, Delaware 19898
L. E. Firment
Affiliation:
E. I. du Pont de Nemours & Company, Wilmington, Delaware 19898
L. H. Brixner
Affiliation:
E. I. du Pont de Nemours & Company, Wilmington, Delaware 19898
Get access

Abstract

Trace oxygen contamination of metal fluoride glasses degrades their performance in applications such as optical fibers or x-ray phosphors. Traditional methods for oxygen determination based on reaction with carbon to form carbon monoxide are slow and insensitive. We have used nuclear reaction analysis, in particular the 18O(p, α) reaction, to determine oxygen content in a variety of metal fluorides. Careful choice of the energy of the incident proton eliminates interference from fluorine. Standardless quantification of our measurements yields good agreement with the known oxygen content of mixtures of oxides and fluorides and with several (non-fluoride) NBS standards over four orders of magnitude. Measurement of 30 ppm oxygen has been demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fleming, James W., in “Optical Fiber Materials and Properties,” edited by Nagel, S. R., Fleming, J. W., Sigel, G. H., and Thompson, D. A., Materials Research Society Symposia Proceedings (1987), Vol. 88, p. 149. See, for example, D.C. Tran, K. H. Levin, M. J. Burk, C.F. Fisherand, D. Brower, Proc. SPIE 618 (1986), p. 48, which reports the achievement of losses below 1 dB/km at 2.55 microns in fluoride glasses by researchers at the Naval Research Laboratory.Google Scholar
2Drexhage, M. G. in “Optical Fiber Materials and Properties,” edited by Nagel, S.R., Fleming, J.W., Sigel, G. H., and Thompson, D.A., Materials Research Society Symposia Proceedings (1987), Vol. 88, p. 109.Google Scholar
3Robinson, M., J. Cryst. Growth 75, 184194 (1986).CrossRefGoogle Scholar
4U.S. Patent 4,608,190.Google Scholar
5U.S. Patent 3,859,527.Google Scholar
6Kosinsiski, S. G. and Bruce, A. J., in “Optical Fiber Materials and Properties,” edited by Nagel, S.R., Fleming, J.W., Sigel, G.H., and Thompson, D.A., Materials Research Society Symposia Proceedings (1987) Vol. 88, p. 163.Google Scholar
7Handbook of Analytical Chemistry, edited by Meites, Louis (McGraw-Hill, New York, 1963).CrossRefGoogle Scholar
8Orlov, V. V. and Karpov, Yu. A., in Metody Issled. Opred. Gazov Met., edited by Petrov, A. A., Ivanova, T.F., and Vitol, E. N. (Leningr. Dom Nauchno-Tekh. Propag., Leningrad, 1973) (CA 83:37135n).Google Scholar
9Potter, J. L., Murphy, J. E., and Healy, H. H., Anal. Chem. 34, 1635 (1962).CrossRefGoogle Scholar
10Horrigan, V. M., Fassel, V. A., and Goetzinger, J. W., Anal. Chem. 32, 787 (1960).CrossRefGoogle Scholar
11Greenfield, B.F. and Hyde, K.R., U.K. At. Energy Auth., At. Energy Res. Estab. Report No. AERE-R4850 (1967) (CA 67:8747Oh).Google Scholar
12Banks, C.V., O'Laughlin, J.W., and Kamin, G.W., Anal. Chem. 32, 1613 (1960).CrossRefGoogle Scholar
13Goldberg, G., Meyer, A.S., and White, J. C., Anal. Chem. 32, 314 (1960).CrossRefGoogle Scholar
14Brune, D., Forkman, B., and Person, B., Nuclear Analytical Chemistry (Studentlitteratur, Lund, Sweden, 1984), p. 344. Both the 16O(n,p)16N reaction and the 19F(n, α)16N reaction yield the same 6.13 and 7.11 MeV gamma rays from decay of the 16N.Google Scholar
15Wai, C. M. and Dysart, M. E., Anal. Chem. 58, 3266 (1986).CrossRefGoogle Scholar
16Mitachi, S., Sakaguchi, S., Yonezawa, H., Shikano, K., Shigematsu, T. and Takahashi, S., Jpn. J. Appl. Phys. 24, L827 (1985).CrossRefGoogle Scholar
17Shikano, K., Kobayashi, K., and Miyazawa, S., Appl. Phys. Lett. 46, 391 (1985).CrossRefGoogle Scholar
1SDeconninck, G. and Demortier, G., J. Radioanal. Chem. 12, 189 (1972); G. Deconninck, Introduction to Radioanalytical Physics, Nuclear Methods Monograph Series 1 (Elsevier, Amsterdam, 1978).CrossRefGoogle Scholar
19Ajzenberg-Selove, F., Nucl. Phys. A392, 1 (1983).CrossRefGoogle Scholar
20Lorenz-Wirzba, H., Schamlabrock, P., Trantvetter, H. P., Wiescher, M., Rolfs, C., and Rodney, W. S., Nucl. Phys. A313, 346 (1979); G. Amsel and D. Samuel, Anal. Chem. 39, 1689 (1967); and Ref. 16.CrossRefGoogle Scholar
21Dieumegard, D., Maurel, B., and Amsel, G., Nucl. Instrum. Methods 168, 93 (1980); and Ref. 16.CrossRefGoogle Scholar
22Foti, G., Mayer, J.W., and Rimini, E., “Backscattering Spectrometry,” in Ion Beam Handbook for Material Analysis, edited by Mayer, J. W. and Rimini, E. (Academic Press, 1977), p. 22. W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry (Academic Press, New York, 1978), p. 63, Eq. 3.11.Google Scholar
23The Stopping Power and Ranges of Ions in Matter, Vol. 3, Hydrogen; Vol. 4, Helium, organized by Ziegler, J. F. (Pergamon Press, New York, 1977).Google Scholar
24Handbook of Chemistry and Physics, edited by Feast, R. C. (CRC Press Cleveland, OH, 1976).Google Scholar